• Title/Summary/Keyword: Plastic Lens

Search Result 133, Processing Time 0.023 seconds

Retardation Analysis of Plastic Optic Lens according to Injection Speed Variation (사출속도 변화에 따른 플라스틱 광학렌즈의 위상차 해석)

  • Park, Soo-Hyun;Kim, Tae-Kyu;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • This study focuses on simulation technology in the injection molding process for plastic optic lenses. The CAE program 3D TIMON was used to predict retardation, flow patterns and warpage deformation. The results were compared to the results of optic lenses as measured using the WPA-100 retardation measurement device with injection molding CAE for retardation predictions. According to the analysis and measured results, the distributions of retardation between the CAE results and the measurement results were similar. It was also confirmed that varying the injection speed had an effect on the injection pressure, warpage deformation and retardation distribution. As the injection speed increases, the injection pressure also increases and warpage deformation decreases. However, as the injection speed increases, the retardation distribution deteriorates.

Circular Fresnel POF(Plastic Optical Fiber) Daylighting System Performance Evaluation Study (원형 프레넬 집광형 POF 주광 조명시스템 성능 평가 연구)

  • Kang, Eun-Chul;Choi, Yong-Jun;Yoon, Kwang-Sik;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • CF(Circular Fresnel) POF(Plastic Optical Fiber) daylighting system is a beam daylighting system utilizing solar direct beam radiation. In this study, a CF POF daylighting system has been introduced, developed and applied to KIER test buildings. The CF POF daylighting system consists of three parts: light collector, light transmitter and light diffuser. The light collector includes a Circular Fresnel lens focusing solar direct illuminance by sun tracking. The light transmitter contains the POF cable which has light transmission loss of 4.5% per meter. The light diffuser has about 80% diffuser efficiency. This study aims to evaluate of POF daylighting system performance. At the results of a CFPOF system performance evaluation, the theoretical CFPOF system efficiency was 41.9% and the actual CFPOF system efficiency at the KIER test building was 37.5%. The difference was due partly to the connecting efficiency.

Development of Plastic Lenses for High-Resolution Phone Camera by Injection-Compression Molding (사출압축성형을 적용한 고해상도 폰 카메라용 플라스틱 렌즈 개발)

  • Lee, Ho Sang;Jeon, Won Taek;Kim, Sung Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.39-46
    • /
    • 2013
  • This study aims to develop a plastic aspheric lens for a 13-megapixel mobile phone camera by injection-compression molding. A mold for injection-compression molding experiments was fabricated with a movable upper plate and four springs. During cavity filling for an aspheric lens with a thickness ratio of 2, a weldline was formed under conventional injection molding, whereas no weldline was formed under injection-compression molding with a compression stroke of 0.3 mm. The flow patterns were in good agreement with the simulation results. The birefringence decreased as the compression stroke increased, and the birefringence produced by injection-compression molding was very low and more uniform compared with that produced by injection molding. In addition, the bulk birefringence of an assembly composed of four plastic lenses was significantly affected by the orientation of the lenses to be mounted.

Out-of-plane Deformation Measurement of Spherical Glasses Lens Using ESPI (ESPI를 이용한 구면 안경렌즈의 면외 변형 측정)

  • Yang, Seung-Pill;Kim, Kyoung-Suk;Jang, Ho-Sub;Kim, Hyun-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.77-81
    • /
    • 2007
  • The spherical lens is typically classified by the refractive power into two groups such as (+) diopter lens and (-) diopter lens. The deformation occurred by the external force that is applied to a lens is caused by the increase or the decrease in the diopter of a lens. In this paper, the deformation of the lens was quantitatively measured by using ESPI (Electronic Speckle Pattern Interferometry) which have been used in the optical measurement field for past few years. ESPI has an advantage that the deformation of an object can be measured precisely by using coherence of the light. The experiment was carried out to the totally 16 types of plastic lens. It was confirmed that the deformation was decreased by increasing the diopter of the lens when same displacement was applied to the lens in case of (+) diopter lens and was increased by decreasing the diopter of the lens in case of (-) diopter lens. Also, it was found that the deformation of (+) diopter lens is less than that of (-) diopter lens. Therefore, with these results, it is expected that the possibility of the quantitative measurement for variation of the optical defect caused by the deformation of a lens when the deformation is occurred to the various types of the lens can be presented and that the application in the lens industrial field can be performed.

  • PDF

Numerical Analysis for the Injection Molding of an Aspheric Lens for a Photo Pick-up Device (광픽업용 비구면 렌즈 사출성형 공정의 수치해석)

  • 박근;한철엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.163-170
    • /
    • 2004
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, however, numerical analysis based on solid elements has been reported as more reliable approach than shell -based one. The present work covers three-dimensional injection molding simulation using MP1/Flow3D and relevant deformation analysis of an injection molded plastic lens based on solid elements. Numerical analysis has been applied to the injection molding processes of an aspheric lens for a photo pick-up device. The reliability of the proposed approach has been verified in comparison with the experiments.

Evaluation of Ultraviolet Blocking of Ophthalmic Lenses (안경렌즈의 자외선 차단 평가)

  • Yu, Dong-Sik;Yoo, Jong-Sook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.7-12
    • /
    • 2008
  • Purpose: To evaluate ultraviolet (UV) blocking characteristics of transparent and tinted ophthalmic lenses. Methods: The transmittance spectra of ophthalmic lenses were measured using the method suggested in ANSI Z80.1 standard. Transmittance percentage were calculated for each lens for UV (200~380 nm; UVA, UVB, UVC) and blue light portions (380~400 nm) of spectrum. Results: The results indicate that transparent plastic lenses with middle, high refractive index and tinted plastic lenses had superior UV blocking characteristics at UV radiation while UV blocker-untreated lenses such as crown glasses and CR39 did not. All except high refractive index lenses and anti-glare night vision lens was not effectively blocked blue light. Conclusions: Crown glass and CR39 lenses need to treat UV blockers to protect eyes from UV. Also, all lenes except high refractive index lenses and anti-glare night vision lens need to treat blue light blockers for protecting from blue light.

  • PDF

Study on Optimal Grinding Condition of Tungsten Carbide(Co 0.5%) using DOE (DOE를 적용한 WC(Co 0.5%)의 최적 연삭가공조건 연구)

  • Kim H.U.;Jeong S.H.;Cha D.H.;Ahn J.H.;Kim S.S.;Kim H.J.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.221-222
    • /
    • 2006
  • In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. Glass lens is manufactured by the forming with high precision mold core. This paper presents the analysis of optimal grinding condition of tungsten carbide(WC, Co0.5%) using design of experiments(DOE). The process parameters are turbin spindle, work spindle, feedrate and depth of cut. The experiments results are evaluated by MINITAB software.

  • PDF

Design of Smart Phone Camera Lens Using Forbes Aspherical Surface (Forbes 비구면을 사용한 스마트폰 카메라렌즈의 설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • We design an F/1.8 smart -phone camera lens utilizing he Forbes aspherical-surface equation, which can effectively create a strong asphere, compared to the conventional, standard aspherical equation. We also describe the principal methodology and procedural steps of optical design to achieve specifications.

Fabrication of refractive PMMA microlens array using transparent acrylic resin (투명 아크릴 레진을 이용한 초소형 PMMA 렌즈 배열의 제작)

  • Ahn, Si-Hong;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3316-3318
    • /
    • 1999
  • PMMA(poly-methyl methacrylate) microlens array is fabricated using transparent acrylic resin. PMMA is commonly used material for plastic lens due to its excellent visibility larger than 90% and other optical characteristics so much close to those of glass. Orthodontic resin (DENTSPLY International Inc.), commonly used in dentistry, is an transparent acrylic resin kit including MMA liquid and polymerization powder. Their mixture results in PMMA through polymerization. Using the resin PMMA layer is formed on the substrate through spin-coating. Designed pattern of lens structure is transferred to PMMA layer by RIE (Reactive Ion Etching) with oxygen plasma. Final lens shape is formed by thermal treatment that causes PMMA to reflow, The thickness of PMMA spun on the substrate is $17{\mu}m$ that is also final sag of microlens, Designed diameters of the microlenses are $200{\mu}m$, $300{\mu}m$,and $500{\mu}m$, respectively.

  • PDF

Ultra-Compact Zoom Lens Design for Phone Camera Using Hybrid Lens System (복합렌즈계를 이용한 폰 카메라용 초소형 줌렌즈 설계)

  • Park, Sung-Chan;You, Byoung-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.349-359
    • /
    • 2008
  • For an inner-focusing 3-groups zoom lens system, this study suggests a new initial design method which applies the process that changes thin lenses into thick ones effectively and quickly, using the hybrid lens system(thin lens+thick lens). In other words, the hybrid lens system is the semi-automatic design process that makes the thin lens of one group change into a thick one while the other groups are composed of thin lenses. Keeping the total power of the system fixed, the power of each group and the distance between principal planes can be fixed. Of course, the other groups composed of thin lenses could be changed into thick lenses sequentially by this process. This design conception results in the 1/4" 5 M inner-focusing 3-groups 2x zoom lens system satisfying the specifications and performances of zoom lens for phone cameras. Also aspherization on lens elements of glass and plastic material enhanced the resolution and reduced the lens size. As a result, we have an ultra-compact inner-focusing 3-groups 2x zoom lens system for a phone camera, with a slim size with TTL of 9.8 mm.