• Title/Summary/Keyword: Plastic Joining

Search Result 242, Processing Time 0.022 seconds

Analysis of Welding Distortion of Large Steel Plate by Using Analytical Solution of Temperature Distribution and Finite Element Method (온도분포 해석 해와 유한요소법을 이용한 대형 강판의 용접변형 해석)

  • Hong, Sung-Bin;Bae, Kang-Yul;Yang, Young-Soo
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • Welding distortions of large steel structures had mainly been estimated with some simplified formula obtained by lots of experience and numerical analyses for small steel structures. However, the large structures would have different characteristics of distortion with welding because of their own stiffness coming from the size itself. Therefore, in order to find some measures for preventing welding distortion of large structure, it is requite in advance to precisely analysis thermal stress and distortion during welding of the structure. Numerical analysis for larger structure has been known to take large amount of calculation time and have a poor convergency problem during the thermo-elasto-plastic calculation. In this study, a hybrid method is proposed to analysis the thermal stress and distortion of a large steel plate with the finite element analysis by incorporating with temperature distribution of the plate calculated by an analytical solution. The proposed method revealed that the thermo-mechanical analysis for welding of the large structure could be performed with a good convergence and produced precise results with much reduced time consumption.

A Study on Structural Integrity Assessment of Pipeline using Weight Function Solution (가중함수법을 적용한 파이프라인 구조건전성평가에 관한 연구)

  • Noh, Ki-Sup;Oh, Dong-Jin;Kim, Myun-Hyun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • There are many Industry Code and Standard (ICS) for Structural Integrity Assessment (SIA) on welded structure with defect. The general ICSs, such as R6, BS 7910 and API 579-1/ASME FFS-1, provide equations to determine the upper bound residual stress profiles based on collections from many literatures. However, these residual stress profiles used in the SIA cause the conservative design for welded structures. In this study, the structural integrity assessment for girth weld in pipeline has been conducted based on fracture mechanics. In addition, thermo-elastic plastic FE analysis was performed for evaluating the residual stress of girth weld in pipeline. The weight function solution is used to determine the stress intensity factor using the residual stress profile obtained by the FE analysis. This approach can account for redistribution and relaxation of residual stress as the defects grow. In order to the evaluate quantitative comparison between BS 7910 and weight function solution, structural integrity assessment determining allowable crack size on cracked pipe was performed with failure assessment diagram.

The effect of welding heat input and heat-treatment on the strength of the electron beam welded $175Kg/mm^2$ maraging steel sheet (전자비임용접한 $175Kg/mm^2$급 박판 Maraging강의 이음강도에 미치는 용접입열 및 열처리의 영향)

  • 윤한상;정병호;배차헌
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.21-29
    • /
    • 1986
  • The influence of welding heat input variation(600-900J/cm) and heat-treatment condition after welding on tensile strength of butt welded joint in $175Kg/mm^2$ strength level Maraging steel(Co-free and Co-containing) sheets was investigated on the basis of hardness distribution, microstructure of weld metal and fracture surface. The obtained main results are as follows; 1. The strength of weldment (UTS, NTS), joint efficiency showed a little decreasing tendency with the increase in welding heat input, and the elongation showed a little increasing tendency with the increase in the width of weld metal. It was considered because of the plastic constraint of the high strength base metal. 2. The strength of weldment was better in the solution treatment and aging than the aging only after welding due to the disappearance of almost denverite in weld metal. 3. The hardness distribution in weldment after welding and heat-treatment was almost similar to both Co containing and Co free Maraging steel with change in welding heat input. 4. The fracture was occurred at weld metal, and the fracture surface showed a relatively shallow dimples in both Co containing and Co free Maraging steel.

  • PDF

J_{Ic}$ evaluation of smooth and side-grooved CT specimens in submerged arc-welded SB 41 (SB41강 潛弧熔接部의 平滑 및 側面을 CT試驗片의 J_{Ic}$ 評價)

  • 오세욱;안광주;이태종
    • Journal of Welding and Joining
    • /
    • v.4 no.1
    • /
    • pp.47-57
    • /
    • 1986
  • The elastic-plastic fracture toughness J_{Ic}$ of submerged arc welded structural steel $SB_{41}$ which has the properties of low strength and high ductility was discussed, especially paying attention to a comparison between two methods recommended by ASTM and JSME. $J_{IC}$ tests were carried out with compact specimens by means of R-curve, SZW, ultrasonic and electric potential methods. Based on the investigations in this study, the results obtained are as follows; (1) The JSME R-curve method gave the smallest $J_{IC}$ values which were physically closest to the crack initiation and seemed to be more practical and stable procedure between the two R-curve methods. (2) The JSME SZW method tended to slightly overestimate the $J_{IC}$ values at initiation of ductile tearing. (3) The ultrasonic and electric potential methods which also had a tendency to overestimate these $J_{IC}$ values were confirmed to be applicable and useful in determining these values. (4) The $J_{IC}$ values by the JSME R-curve method were 18.06 kgf/mm and 17.25kgf/ mm for the smooths and the side grooved CT specimen respectively.

  • PDF

A study on reduction of pre-crack deviation in CTOD specimen using reverse bending method (Reverse Bending을 통한 CTOD 시험 예비균열 형상균일화에 관한 연구)

  • Jeong, Sehwan;Park, Dong-Hwan;Kim, Hyeon-Su;Shin, Sang-Beom;Park, Tae-Jong
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • This study investigates the appropriate range of reverse bending load for the CTOD test of thick weld by observing improvement of pre-crack shape and determination of the limit applicable load. In order to do it, the effect of the amount of the reverse bending load on the maximum deviation of the pre-crack length was investigated by the extensive tests, and the variation of plastic zone size in way of the crack tip under reverse bending load were evaluated by FEA. With the results obtained by the experiments and FEA, the proper range of reverse bending load was suggested. The effectiveness of the reverse bending method was verified by examining the pre-crack straightness after CTOD tests of thick weld specimens with various thickness and strength.

Analysis of Residual Stress on Dissimilar Butt Joint by TIG Assisted Hybrid Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 잔류응력 해석)

  • Bang, Hee-Seon;Ro, Chan-Seoung;Bijoy, M.S.;Bang, Han-Sur;Lee, Yoon-Ki
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • This paper aimed to study and understand the mechanical phenomena of thermal elasto-plastic behavior on the dissimilar butt joint (Al 6061-T6 and STS304) by TIG assisted Friction Stir Welding. Heat conduction and residual stress analysis is carried out using in-house solver. Two-dimensional results of the heat distribution and residual stresses in dissimilar joint for particular tool geometry and material properties are presented. The predicted stress along longitudinal direction in Al 6061-T6 and STS304 are approximately between 12-15% of their respective yield strengths. A comparison is made between experimentally measured and numerically predicted equivalent residual stress values.

Numerical Fatigue Test Method Based on Continuum Damage Mechanics (연속체 손상역학을 이용한 수치 피로시험 기법)

  • Lee, Chi-Seung;Kim, Young-Hwan;Kim, Tae-Woo;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.63-69
    • /
    • 2007
  • Once assessment of material failure characteristics is captured precisely in a unified way, it can bedirectly incorporated into the structural failure assessment under various loading environments, based on the theoretical backgrounds so called Local Approach to Fracture. The aim of this study is to develop a numerical fatigue test method by continuum damage mechanics applicable for the assessment of structural integrity throughout crack initiation and structural failure based on the Local Approach to Fracture. The generalized elasto-visco-plastic constitutive equation, which can consider the internal damage evolution behavior, is developed and employed in the 3-D FEA code in order to numerically evaluate the material and/or structural responses. Explicit information of the relationships between the mechanical properties and material constants, which are required for the mechanical constitutive and damage evolution equations for each material, are implemented in numerical fatigue test method. The material constants selected from constitutive equations are used directly in the failure assessment of material and/or structures. The performance of the developed system has been evaluated with assessing the S-N diagram of stainless steel materials.

Fatigue Strength Evaluation of Self-Piercing Riveted Al-5052 Joints (셀프 피어싱 리베팅한 Al-5052 접합부의 피로강도 평가)

  • Kang, Se Hyung;Hwang, Jae Hyun;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • Self-piercing riveting (SPR) is receiving more recognition as a possible and effective solution for joining automotive body panels and structures, particularly for aluminum parts and dissimilar parts. In this study, static strength and fatigue tests were conducted using coach-peel and cross-tension specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. For the static experiment results, the fracture modes are classified into pull-out fracture due to influence of plastic deformation of joining area. During the fatigue tests for the coach-peel and cross-tension specimens with Al-5052, interface failure mode occurred on the top substrate close to the rivet head in the most cycle region. There were relationship between applied load amplitude $P_{amp}$ and life time of cycle N, $P_{amp}=715.5{\times}N^{-0.166}$ and $P_{amp}=1967.3{\times}N^{-0.162}$ were for the coach-peel and cross- tension specimens, respectively. The finite element analysis results for specimens were adopted for the parameters of fatigue lifetime prediction. The relation between SWT fatigue parameter and number of cycles was found to be $SWT=192.8N_f^{-0.44}$.

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

A Study on the Stress Corrosion Cracking Evaluation for Weld Joint of TMCP steel by SP-SSRT Method (SP-SSRT법에 의한 TMCP강 용접부의 응력부식균열 평가에 관한 연구)

  • 유효선;정희돈;정세희
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • The object of this paper is to evaluate SCC(stress corrosion cracking) susceptibility for parent metal and bond line region of weld joints which have the various weld heat input condtions in TMCP(thermo-mechanical control process) steel by SP-SSRT(small punch-slow strain rate test) method. And the SCC test results of TMCP steel are compared with those of the conventional HT50 steel which has te almost same tensile strength level like TMCP steel. The loading rate used was $3\times10^{-4}$mm/min and the corrosive environment was synthetic sea water. According to the test results, in the case of parent metal, TMCP steel showed higher SCC susceptibility than HT50 steel because of the high plastic strain level of ferrite microstructure obtained by accelerated cooling. And in the case of bond line, the both TMCP steel and HT50 steel showed low load-displacement behaviors and higher SCC susceptibility above 0.6. These results may be caused by theembrittled martensite structure on HT50 steel and by the coarsened grain and the proeutectoid ferrite structure obtained by the impart of accelerated cooling effect on TMCP steel.

  • PDF