• Title/Summary/Keyword: Plastic Injection Product

Search Result 94, Processing Time 0.026 seconds

The Application of 3D Injection Molding Simulation in Gate Location Selection for Automotive Console (자동차용 콘솔 게이트 위치 선정을 위한 3차원 사출성형 시뮬레이션 활용)

  • Choi, Young-Geun
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-58
    • /
    • 2014
  • Injection molding simulation provided optimized design results by analyzing quality problems while the product is in assembly or in the process of manufacturing with make automobile plastics. Frequent change of design, change of injection molding, repetition of test injection which was held in the old way can now be stopped. And quality upgrade is expected instead. This report deals with the effect which the position of injection molding automobile console gate and number has on product quality including pressure at end of fill, bulk temperature at end of fill, shear stress of end of fill, residual stress at post filling end, product weld lines and warpage results. Simpoe-Mold simulates the complete manufacturing process of plastic injected parts, from filling to warpage. Simpoe-Mold users, whether they are product designers, mold makers or part manufacturers, can identify early into the design stage potential manufacturing problems, study alternative solutions and directly assess the impact of such part modification, whatever the complexity and geometry of such parts, shell part as plain solid parts.

The Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis (사출-구조 연성해석을 통한 Glass Fiber 배향성이 충격 파괴에 미치는 영향)

  • Kim, Woong;Kim, JongRyang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • The use of engineering plastics in automotive components is increasing with the trend towards improving the car strength and reducing weight. Among the different choices of materials, engineering plastic emerged as the necessary material for achieving lower costs, reduced weight and improved production efficiency. To produce the automotive parts, it is important to predict defect and validation of injection molding prior to design. Injection molding analysis and structural analysis are widely applied as a part of the design process when developing automotive parts. Injection molding analysis, in particular, involves a highly complicated mechanism that requires deep knowledge of polymer properties as well as an analytic approach different from that used for a general isotropic material when the molded material is used as a structural material. This is because the parts made of polymer have pre-stress factors such as intrinsic deformation and residual stress. The most important factors for injection molded plastic products are injection molding condition and cavity design, taking into account ease of molding, mass production and application. Despite optimal injection molding conditions and cavity design, however, glass fiber orientation is critically linked to strength reduction. The application of injection molding and structural coupled analysis provides a low-cost solution for product molding and structural validation, all prior to the actual molding. The purpose of this study involves the validation, pre-study, and solution of defect in injection-molded polymer automotive parts using the simulation software for injection molding and structural coupled analysis. Finally, this thesis provides validation of an injection molding and structural coupled analytic mechanism that can demonstrate the effect of glass fiber orientation on mechanical strength. Design improvement ideas for the injection molded product of PPS (Poly Phenylene Sulfide)+40% glass fiber are also suggested.

The Effects of Anti-Histamine and Mast Cell Stabilizer against Ischemia-Reperfusion Injury to TRAM Flap in Rat (백서 복직근피판의 허혈-재관류 손상에 대한 히스타민 차단제의 효과)

  • Yoon Sang;Kyu Yoon;Yun Jeong
    • Archives of Plastic Surgery
    • /
    • v.33 no.6
    • /
    • pp.742-747
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the role of mast cell and histamine as typical product of mast cell in ischemia-reperfusion injury of muscle flap using H2 receptor blocker and mast cell stabilizer. Methods: Thirty-five Sprague-Dawley rats weighing 250-300 gm were divided into four groups; Group I: Control group without ischemia, Group II: Normal saline injection group with ischemia, Group III: Cimetidine injection group with ischemia, Group IV: Sodium cromoglycate injection group with ischemia. Well established single pedicled transverse rectus abdominis musculocutaneous(TRAM) flap was designed in all rats and were rendered ischemia by clamping the artery for 150 minutes. All injections were applied intramuscular around gluteal area 30 minutes before reperfusion. The flap survival was evaluated at 7 days after operation. Neutrophil counts and mast cell counts were evaluated 24 hours after reperfusion. Results: The difference of skin flap survival between control group and cimetidine injection group was not significant. In the normal saline injection group flap survival was markedly decreased compared to that of control group. The muscle flap survival was similar to the results of skin flap survival. The neutrophil counts were significantly decreased in control group and sodium cromoglycate injection group than normal saline injection group. The mast cell counts were significantly decreased in cimetidine injection group and control group than both normal saline injection and sodium cromoglycate injection groups. The protective effect of sodium cromoglycate was not seen in the skin flap, but the muscle flaps showed protective effects of sodium cromoglycate compared to normal saline injection group. Conclusions: It is suggests that commonly used antihistamine(H2 receptor blocker) has protective effect against ischemia-reperfusion injury to skin and muscle flaps by reducing neutrophil and mast cell. The mast cell stabilizer was not effective for skin flap but, possibly, for muscle flap.

Design of Conformal Cooling Channels for the Mould of a Plastic Drawer of a Refrigerator by Analysis of Three-Dimensional Injection Moulding (3 차원 사출성형 해석을 통한 냉장고 플라스틱 서랍 제작용 사출 성형 금형의 형상적응형 냉각수로 설계)

  • Ahn, Dong-Gyu;Park, Min-Woo;Park, Seung-Hwa;Kim, Hyung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1487-1492
    • /
    • 2010
  • The objective of this study is to design the conformal cooling channels for the mould of a plastic drawer of a refrigerator by analysis of three-dimensional injection molding. In order to obtain the desired design of the conformal cooling channels, the influence of the diameter and the position of the conformal cooling channels on the moulding characteristics and the product qualities were quantitatively examined. From the results of the examination, an optimal design of the conformal cooling channels, which ensures uniform cooling and minimum potential deformation of the molded drawers, was estimated. By comparing the designed mould and a conventional mould with linear cooling channels from the viewpoints of the product qualities as well as cooling and cycle times, it was shown that the mould with conformal cooling channels can simultaneously improve the productivity of the injection moulding process and the product qualities.

A Study on the Molding Characteristics of Injection Compression Molding Through Computer Simulation (컴퓨터 해석을 통한 사출압축성형의 성형특성에 관한 연구)

  • Chun, Y.H.;An, H.G.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.341-346
    • /
    • 2012
  • Injection molding is one of the widely used polymer processing operations. It is being used for not only conventional injection molding but gas injection molding, water injection molding, and injection compression molding. Injection compression molding involves injection and compression operation, and it gives uniform physical property and high dimensional quality of product. In this study, injection compression characteristics for various product shapes have been investigated by computer simulation. Product containing side wall showed not much effective in injection compression molding since wall thickness direction was perpendicular to the compression direction. Uniform and low shrinkage was observed in injection compression molding comparing conventional injection molding. Subsequently injection compression molding can be used for molding precise product. Optimal injection compression molding condition was obtained using design of experiment for plastic lens and the results were compared with conventional injection molding.

Development of Rapid Cooling System for Injection Mold (사출금형의 급속냉각시스템 개발)

  • Moon, Young-Bae;Choi, Youn-Sik;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.31-34
    • /
    • 2014
  • The Injection molding is used more than 70% of total production in plastic products. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. It spends most of times in the cooling process. Therefore, it is important to control the mold temperature in producing plastic products. The cooling system and time affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, the rapid cooling system was developed and performed a efficiency test. This system could refrigerate coolant to $1^{\circ}C$ and had to need 10 minutes for normal operating. However, if response time of temperature controller and sensor will be increased, the performance of this system will increase.

  • PDF

Development of Rapid Cooling System using Peltier Device (펠티에 소자를 이용한 급속 냉각시스템의 개발)

  • Jang, M.K.;Lee, G.H.;Noh, K.C.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.38-42
    • /
    • 2009
  • The Injection molding is used more than 70% of total production in plastic products. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. now then, cooling process spends the most of times in Injection molding cycle time. Therefore, it is important to control the mold temperature in producing plastic products. The cooling system and time affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, the rapid cooling system was developed and performed a efficiency test. This system could refrigerate coolant to $1^{\circ}C$ and had to need 10 minutes for normal operating.

  • PDF

The decision of forming condition and design of injection mold by considering contraction rate of POM resin (POM 수지의 수축율을 고려한 사출금형설계 및 성형조건 선정)

  • Lee, K.Y.;Kim, H.M.;Park, S.S.;Park, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.180-183
    • /
    • 2006
  • The contraction rate is a very important element that dominate quality of product in plastic injection molding. To get wanted products, the contraction rate of used resin must be considered necessarily when designing plastic injection molds, and suitable deform conditions must be chosen with this. In this paper, important parts used in LED department were produced by injection mold using POM resin, and dimension error that happened by contraction rate of resin was corrected and reflected in die design and suitable deform conditions were decided.

  • PDF

Development of Rapid Cooling System for Injection Mold (사출금형의 급속냉각시스템 개발)

  • Moon, Young-Bae;Choi, Youn-Sik;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.111-114
    • /
    • 2008
  • The Injection molding is used more than 70% of total production in plastic products. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. It spends most of times in the cooling process. Therefore, it is important to control the mold temperature in producing plastic products. The cooling system and time affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, the rapid cooling system was developed and performed a efficiency test. This system could refrigerate coolant to $1^{\circ}C$ and had to need 10 minutes for normal operating. However, if response time of temperature controller and sensor will be increased, the performance of this system will increase.

  • PDF

A study on plastic mold design for robot shape and mold manufacture (로봇형상 플라스틱금형설계 및 제작에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.64-69
    • /
    • 2012
  • This study looks at plastic mold design for robots and mold manufacture, which is an injection mold branch at The Korea-China-Japan University Grand Prize Contest. Product analysis and layout, molding analysis, and upper and lower core design are carried out to design molds in 2D and 3D. After the design of the cores, NC machining software is used for simulation before actual manufacture. Before the production of end-product, test injection is done to troubleshoot problems like bad dimensions, burr, cracks and stepped pulley.

  • PDF