• Title/Summary/Keyword: Plastic Frame

Search Result 443, Processing Time 0.027 seconds

Distribution of Optimum Yield-Strength and Plastic Strain Energy Prediction of Hysteretic Dampers in Coupled Shear Wall Buildings

  • Bagheri, Bahador;Oh, Sang-Hoon;Shin, Seung-Hoon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1107-1124
    • /
    • 2018
  • The structural behavior of reinforced concrete coupled shear wall structures is greatly influenced by the behavior of their coupling beams. This paper presents a process of the seismic analysis of reinforced concrete coupled shear wall-frame system linked by hysteretic dampers at each floor. The hysteretic dampers are located at the middle portion of the linked beams which most of the inelastic damage would be concentrated. This study concerned particularly with wall-frame structures that do not twist. The proposed method, which is based on the energy equilibrium method, offers an important design method by the result of increasing energy dissipation capacity and reducing damage to the wall's base. The optimum distribution of yield shear force coefficients is to evenly distribute the damage at dampers over the structural height based on the cumulative plastic deformation ratio of the dissipation device. Nonlinear dynamic analysis indicates that, with a proper set of damping parameters, the wall's dynamic responses can be well controlled. Finally, based on the total plastic strain energy and its trend through the height of the buildings, a prediction equation is suggested.

Elasto-Plastic Behavior of Steel Beams with High Strength Bolted Splices (고력볼트 접합이음 철골보의 탄소성거동)

  • Choi, Sung Mo;Kim, Jin Ho;Roh, Won Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.531-539
    • /
    • 2003
  • Unlike field-welded moment frames damaged during the Northridge earthquake, a column-tree moment frame has a tool to control and reduce its seismic behavior. The tool is the girder splice. Girder splices could be designed to be sufficiently ductile and to have a prescribed bending moment capacity. In such a design, during earthquakes, the girder splices would act as ductile "fuses" and limit the magnitude of forces including the bending moment that could be developed in the frame. In Korea, most moment frames arc composed of a column-tree moment frame. Therefore, the elasto-plastic behavior of steel beams with high strength bolted friction splice should be clarified. Furthermore, structural capacities, including energy absorption capacity, must be quantitatively found. This paper discusses an experimental study to clarify elasto-plastic behavior of steel beams with high strength bolted friction splices. A total of 5 specimens were tested. A specimen was fabricated to have a beam splice designed by a full strength method. Other specimens were fabricated to have beam splices with 75%, 50% and 0% capacities compared with the specimen.

Fabrication of Stable Cartilage Framework for Microtia in Incomplete Synchondrosis

  • Cho, Byung-Chae;Lee, Jung-Hun;Choi, Kang-Young;Yang, Jung-Dug;Chung, Ho-Yun
    • Archives of Plastic Surgery
    • /
    • v.39 no.2
    • /
    • pp.162-165
    • /
    • 2012
  • The synchondrosis between the sixth and seventh costal cartilage is usually used for the base frame in autogenous ear reconstruction. If the synchondrosis is loose, a variety of modifications can be devised. This report introduces new methods for these problems. In cases of incomplete synchondrosis, only the surface of the base block margin was smoothly tapered without carving for the removal of the conchal deepening. The secure fixation of the two segments (helix and antihelix) to the base block using fine wire sutures gave stability to the unstable basal frame. After confirming that all the segments were assembled in one stable piece, the remaining conchal deepening of the basal framework was removed, and the outer lower portion of the basal cartilage was trimmed along its whole length. A total of 10 consecutive patients with microtia, ranging from 8 to 13 years old, were treated from 2008 to 2009. The follow-up period was 6 months to 2 years. Despite incomplete synchondrosis, the stable frameworks were constructed using the authors' method and aesthetically acceptable results were achieved. The proposed method can provide an easy way to make a stable cartilage framework regardless of the variable conditions of synchondrosis.

The Discrete Optimum Design of Steel Frame Considering Material and Geometrical Nonlinearties (재료 및 기하학적 비선형을 고려한 브레이싱된 강뼈대구조물의 최적설계)

  • Chang, Chun Ho;Park, Moon Ho;Lee, Hae Kyoung;Park, Soon Eung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.317-328
    • /
    • 2000
  • The objective of the research is to develop an algorithm for the optimum design of two-dimensional braced steel frames using an advanced analysis, which considers both material and geometric nonlinearties. Since both nonlinearties are considered in analysis process, Optimum design algorithm which does not require to calculate K-factor is presented. A multi-level discrete optimization technique with two parameters that uses the information of structural system and separate member has been developed. The structural analysis is performed by the relined plastic-hinge method which is based on zero-length plastic hinge theory. Optimization problem are formulated by AISC-LRFD code. The feasibility, validity and efficiency of the developed algorithm is demonstrated by the results of the braced steel frame.

  • PDF

An Experimental study on Failure Mode of Space Frame's Ball joint connection (스페이스프레임의 볼조인트 접합부 파괴모드에 관한 실험적 연구)

  • Lee, Sung-Min;Kim, Min-Sook;Kim, Dae-Young;Song, Chang-Young;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.61-68
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

Whole-working history analysis of seismic performance state of rocking wall moment frame structures based on plastic hinge evolution

  • Xing Su;Shi Yan;Tao Wang;Yuefeng Gao
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.175-189
    • /
    • 2024
  • Aiming at studying the plastic hinge (PH) evolution regularities and failure mode of rocking wall moment frame (RWMF) structure in earthquakes, the whole-working history analysis of seismic performance state of RWMF structure based on co-operation performance and PH evolution was carried out. Building upon the theoretical analysis of the elastic internal forces and deformations of RWMF structures, nonlinear finite element analysis (FEA) methods were employed to perform both Pushover analysis and seismic response time history analysis under different seismic coefficients (δ). The relationships among PH occurrence ratios (Rph), inter-story drifts and δ were established. Based on the plotted curve of the seismic performance states, evaluation limits for the Rph and inter-story drifts were provided for different performance states of RWMF structures. The results indicate that the Rph of RWMF structures exhibits a nonlinear evolution trend of "fast at first, then slow" with the increasing of δ. The general pattern is characterized by the initial development of beam hinges in the middle stories, followed by the development towards the top and bottom stories until the beam hinges are fully formed. Subsequently, the development of column hinges shifts from the bottom and top stories towards the middle stories of the structure, ultimately leading to the loss of seismic lateral capacity with a failure mode of partial beam yield, demonstrating a global yielding pattern. Moreover, the limits for the Rph and inter-story drifts effectively evaluate the five different performance states of RWMF structures.

Simplified Collapse Analysis of Ship Transverse Structures

  • Yang, Park-Dal-Chi
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.26-36
    • /
    • 1993
  • In this paper, a thoery for the static analysis of large plastic deformations of 3-dimentional frames, aiming at application to the collapse analysis of ship structures, is presented. In the frame analysis formulation, effects of shear deformations are included. A plastic hinge is inserted into the field of a beam and post-failure deformation of the plastic hinge is characterized by finite rotations and extensions. In order to model deep web frames of ship's structures into a framed structures, collapse of thin-walled plate girders is investigated. The proposed analysis method is applied to several ship structural models in the references.

  • PDF

Seismic performance of 1/4-scale RC frames subjected to axial and cyclic reversed lateral loads

  • Bechtoula, Hakim;Sakashita, Masanobu;Kono, Susumu;Watanabe, Fumio
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.147-164
    • /
    • 2005
  • This paper summarizes an experimental study on the seismic behavior of lower stories of a mid-rise reinforced concrete frame building. Two reinforced concrete frames with two stories and one span were tested and each frame represents lower two stories of an 11-story RC frame building. Both frames were designed in accordance with Japanese design guidelines and were identical except in the variation of axial force. The tests demonstrated that the overall load-displacement relations of the two frames were nearly the same and the first-story column shear was closely related to the column axial load. The columns and beams elongated during both of the tests, with the second-floor beam elongation exceeding 1.5% of the beam clear span length. The frame with higher axial loads developed more cracks that the frame under moderate axial load.

The Investigation of Structural Behavior with Variations in the Lower Stories of Complex Buildings using Push-over Analysis (Push-over 해석을 사용한 복합구조물의 하부골조 층수변화에 따른 거동분석)

  • 강병두;전대한;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.398-405
    • /
    • 2001
  • Upper wall-lower frame(complex building) can be divided into three partition, namely, upper wall, lower frame, and transfer system which link two partitions. The purpose of this study is to investigate the elasto-plastic response characteristics of structures with variation in the stories of lower frame of complex buildings. The conclusions of this study was following; 1) In the push-over analysis for vertically irregular building, the distribution of lateral forces is judged which consider the effects of higher mode. 2) In proportion as the stories of lower frame increase inter-story displacement of lower frame increased, but that of upper wall decreased. 3) The appearance of yielding hinge with variations in the lower stories of complex buildings differed in lower frame of each model, but was almost the same in upper wall.

  • PDF

Evaluation of the Lateral Ultimate Strength of Steel Moment Resisting Frames under Axial and lateral Forces (수평력과 축력을 받는 강골조의 최대수평내력 평가)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.69-78
    • /
    • 1999
  • When the lateral forces are applied to a frame, columns in the frame are usually accompanied with sidesway. If this sidesway is large, the frame is subjected to buckling and an early yielding of members which reduces the overall frame stiffness. In this study, numerical analysis of frames were conducted to evaluate the ultimate lateral strength of steel moment resisting frames permitted to sidesway under axial and lateral forces, and develope the procedure for determining the limits of column slenderness ratios. In the numerical analysis, the effects of the relative stiffness ratio between beam and column, deterioration of overall frame stiffness, slenderness ratio and loading conditions were considered. The elasto-plastic analysis method in which the $P-{\Delta}$effect is implemented, presented by the author previously, was adopted in the analysis. Incremental lateral forces were applied to the frame under constant axial loads and the generalized inverse is employed for the post-ultimate behavior.

  • PDF