• Title/Summary/Keyword: Plastic Deformation Behaviour

Search Result 83, Processing Time 0.025 seconds

Analysis of Welding Residual Stress Redistributions on Notched Multi-pass FCA Butt Weldment (노치가공에 의한 다층 FCA 용접부의 잔류응력 재분포 특성)

  • Bang, Hee-Seon;Bang, Han-Sur;Oh, Ik-Hyun;Kim, Jun-Hyung
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.86-91
    • /
    • 2010
  • In the present study, two-dimensional plane deformation thermo elasto-plastic analysis has been carried out, in order to investigate the thermal and mechanical behaviour (residual stress, plastic strain, magnitude of stress and their distribution and production mechanism) on multi-pass FCA butt weldment of high strength EH36-TMCP ultra thick plate. Moreover, this study can be considered as a basis for analysing the fracture toughness, KIC, and its effect on welding residual stress redistribution with notch on multi-pass FCA butt weldment, in future. The results of welding residual stress obtained from thermo elasto-plastic analysis has been compared and verified with the results measured by XRD.

A numerical study on squeezing of overstressed rock around deep tunnels (심부 터널 주변 과응력 암반의 압출 거동에 관한 수치해석적 연구)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.557-568
    • /
    • 2016
  • Squeezing is a phenomenon that may occur in deep tunneling and could bring about a large plastic deformation, tunnel closure and collapse of tunnel supports. Therefore, quantitative estimations of deformation and stress from squeezing and its possibility are necessary for establishment of a rational tunneling method. This study carried out three dimensional numerical analyses using a strain softening model in order to simulate the behaviour of squeezing and to estimate deformation and yield area around tunnels quantitatively. Numerical analyses were performed for 42 cases of various stress and strength conditions. As a result, the maximum tangential stress and strength of rock mass ratio could estimate plastic deformation and yield depth around tunnels and equations of relations between them were proposed.

Stability and Adhesion of Diamond-like Carbon Film under Micro-tensile Test Condition (미소 인장시험을 통한 다이아몬드상 카본 박막의 안정성 및 접합력 평가)

  • Choi Heon Woong;Lee Kwang-Ryeol;Wang Rizhi;Oh Kyu Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.175-181
    • /
    • 2004
  • We investigated the stability of the DLC film coated on 304 stainless steel substrate by Radio frequency assisted chemical vapor deposition method. Fracture and spallation behaviour of the coating was observed during micro-tensile test of the fil $m_strate composite. As the tensile deformation progressed, the cracks of the film were observed in the perpendicular direction to the tensile axis. Further deformation resulted in the plastic deformation with $45^{\circ}$ slip bands on the substrate surface. Spallation of the film occurred with the plastic deformation, which was initiated at the cracks of the film and was aligned along the slip directions. We found that both the cracking and the spallation behaviors are strongly dependent on the pre-treatment condition, such as Ar plasma pre-treatment. The spallation of the film was considerably suppressed in an optimized condition of the substrate cleaning by Ar glow discharge. We observed the improved stability with increasing duration of Ar plasma pre-treatment.nt.

A Simplified Finite Element Method for the Ultimate Strengh Analysis of Plates with Initial Imperfections (초기결함을 가진 판의 최종강도해석을 위한 간이 유한요소법)

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.24-38
    • /
    • 1989
  • In this study, an attempt for formulating a new and simplified rectangular finite element having only four corner nodal points is made to analyze the elastic-plastic large deformation behaviour up to the ultimate limit state of plates with initial imperfections. The present finite element contains the geometric nonlinearity caused by both in-plane and out-of-plane large deformation because for very thin plates the influence of the former may not be negligible. Treatment of expanded plastic zone in the plate thickness direction of the element is simplified based upon the concept of plastic node method so that the elastic-plastic stiffness matrix of the element is derived by the simple matrix operation without performing complicated numerical integration. Thus, a considerable saving of the computational efforts is expected. A computer program is also completed based on the present formulation and numerical calculation for some examples is performed so as to verify the accuracy and validity of the program.

  • PDF

Behaviour of the Reinforced Concrete Columns with Shear Reinforcement (전단보강량에 따른 철근콘크리트 기둥의 거동)

  • Nam, Sang-Uk;Song, Han-Beom;Tae, Kyung-Hoon;Yi, Waon-Ho;Oh, Sang-Hoon;Yang, Won-Jik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.45-48
    • /
    • 2008
  • Under earthquake loads, the columns on the lower stories carry large axial forces and horizontal forces as the earthquake loads are acting horizontally and vertically on the building. To distribute the energy entered into the building under earthquakes according to the plastic deformation of the members, it is safer and more economic to persuade plastic hinge to occur in the beams rather than on the columns. However, it is unavoidable to have plastic hinge occurring on the columns when it is applied on both of the main axes of the building, which results in high shear force on the column end, and reinforced concrete column may result in sudden brittle failure due to bending moment and shear force. To increase restriction of the reinforced concrete column on the horizontal forces, this study uses repetitive loading experiments with different amount of shear reinforcement, and analyzes and compares the structural safety and behaviour of the reinforced test materials.

  • PDF

A Study on the Tripping Behaviour of Stiffened Plate according to the Stiffener type (Stiffener형상에 따른 보강판의 트리핑거동에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.89-94
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members. In the ultimate limit state design, therefore, a primary task is to accurately calculate the buckling and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately, resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used. Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression. For this purpose of study, in used elasto-plasticity deformation FEA method are used for this study.

  • PDF

Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys

  • Alam, M. Shahria;Nehdi, Moncef;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.565-585
    • /
    • 2009
  • Superelastic Shape Memory Alloys (SMAs) are gaining acceptance for use as reinforcing bars in concrete structures. The seismic behaviour of concrete frames reinforced with SMAs is being assessed in this study. Two eight-storey concrete frames, one of which is reinforced with regular steel and the other with SMAs at the plastic hinge regions of beams and regular steel elsewhere, are designed and analyzed using 10 different ground motion records. Both frames are located in the highly seismic region of Western Canada and are designed and detailed according to current seismic design standards. The validation of a finite element (FE) program that was conducted previously at the element level is extended to the structure level in this paper using the results of a shake table test of a three-storey moment resisting steel RC frame. The ten accelerograms that are chosen for analyzing the designed RC frames are scaled based on the spectral ordinate at the fundamental periods of the frames. The behaviour of both frames under scaled seismic excitations is compared in terms of maximum inter-storey drift, top-storey drift, inter-storey residual drift, and residual top-storey drift. The results show that SMA-RC frames are able to recover most of its post-yield deformation, even after a strong earthquake.

Study on Evaluation of Plastic Deformation Zone at Crack Tip for the Multi-Passed Weld Region of the Pressure Vessel Steel Using Nondestructive Method (비파괴법에 의한 압력용기 강 다층용접부의 균열선단에서 소성변형 역성장거동 평가에 관한 연구)

  • Na, Eui-Gyun;Lee, Sang-Guen
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.473-478
    • /
    • 2009
  • The purpose of this study is to evaluate the behaviour of the plastic deformed zone at crack tip on the standard Charpy specimens which were taken from the multi-passed weld block of the pressure vessel steel. Notch was machined on the standard Charpy test specimens and pre-crack which was located around the fusion line was made under the repeat load. Four point bend and acoustic emission tests were carried out simultaneously. The size of plastic region at crack tip was calculated using stress intensity factor. Relationships between characteristics of acoustic emission and plastic zone size at crack tip were discussed through the cumulative AE energy. Regardless of the specimens, AE signals were absent within the elastic region almost and most of AE signals were produced at the plastic deformation region from yield point to the mid-point between yield and maximum load. More AE signals for the weldment were produced compared with the base-metal and PWHT specimen. Relations between plastic deformed zones at crack tip and cumulative AE energy for the weldment and PWHT specimen were different quietly from the base-metal. Besides, number of AE counts for the weldment was the larger than those of the base-metal and PWHT specimen.

Creep Fracture Mechanics Analysis for Through-Wall Cracked Pipes under Widespread Creep Condition (광범위 크리프 조건에 대한 관통균열 배관의 크리프 파괴역학 해석)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.890-897
    • /
    • 2003
  • This paper compares engineering estimation schemes of C* and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C* and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C* and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C* and COD rate than the reference stress method.

Ultimate Compressive Strength Analysis of TMCP High Tensile Steel Plates with HAZ Softening(2nd Report) (HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 제 2 보)

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 1991
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The softening region which has lower yield stress than base metal is located to prevent cracking in the conventional high tensile steel. Also, thermo mechanical control process(TMCP) steel with low carbon equivalent has the softening region which occurs in the heat affected zone when high heat input weld is carried out. The softening region in the high tensile steel gives rise to serious effect on structural strength such as tensile strength, fatigue strength and ultimate strength. In order to make a reliable structural design using high tensile steel plates, the influence of the softening on plate strength should be evaluated in advance. In the previous paper, the authors discussed the ultimate compressive strength of 50HT steel square plates with softening region. In this paper, the ultimate compressive strength with varying the yield stress of softening region and the aspect ratio of the plate is investigated by using the elasto-plastic large deformation finite element method.

  • PDF