• Title/Summary/Keyword: Plastic Defect

Search Result 880, Processing Time 0.032 seconds

The Case Study of Design on Steel Pipe Sheet Pile for Earth Retaining Wall on Deep Excavation (대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구)

  • Byung-Il Kim;Jong-Ku Lee;Kyoung-Tae Kim;Kang-Han Hong;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 2023
  • In this study, the results of the elasto-plastic beam analysis, finite element analysis and optimization design of the steel pipe sheet pile applied as an earth retaining wall under the deep excavation were presented. Through this study, it was found that the high-strength and sea resistant steel pipe has high allowable stress, excellent structural properties, favorable corrosion, and high utilization as an earth retaining wall, and the C-Y type joint has significantly improved the tensile strength and stiffness compared to the traditional P-P type. In addition, it was investigated that even if the leak or defect of the wall occurs during construction, it has the advantage of being able to be repaired reliably through welding and overlapping. In the case of steel pipe wall, they were evaluated as the best in views of the deep excavation due to the large allowable bending stress and deformation flexibility for the same horizontal displacement than CIP or slurry wall. Elasto-plastic and finite element analysis were conducted in consideration of ground excavation under large-scale earth pressure (uneven pressure), and the results were compared with each other. Quantitative maximum value were found to be similar between the two methods for each item, such as excavation behavior, wall displacement, or member force, and both analysis method were found to be applicable in design for steel pipe sheet pile wall. Finally, it was found that economical design was possible when determining the thinnest filling method with concrete rather than the thickest hollow shape in the same diameter, and the depth (the embedded length through normality evaluation) without rapidly change in displacement and member force.

Mechanical Characteristics and Macro-and Micro-structures on Friction Stir Welded Joints with 5083O Al Alloys (Al 5083O합금의 마찰교반용접부의 조직과 특성평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • This paper shows the behaviors of macro- and micro-structures and mechanical properties for specimen's welding region welded by FSW. according to welding conditions with 5mm thickness aluminum 5083O alloy plate. It apparently results in defect-free weld zone in case traverse speed was changed to 32 mm/min under conditions of anti-clockwise direction and tool rotation speed such as 800 and 1250 rpm with tool's pin diameter of 5 ${\Phi}mm$ and shoulder diameter of 20 ${\Phi}mm$, pin length of 4.5 mm and tilting angle of $2^{\circ}$. The ultimate stress of ${\sigma}_T=331$ MPa and the yield point of 147 MPa are obtained at the condition of the travel speed of 32 mm/min with the tool rotation speed of 1250 rpm. There is neither voids nor cracks on bended surface of $180^{\circ}$ after bending test. The improvement of toughness after impact test was found. The lower rotating and traverse speed became, the higher were yield point, maximum stress and elongation(%) with the stresses and the elongation(%) versus the traverse speed diagram. Vickers hardness for cross section of welding zone were also presented. The typical macro-structures such as dynamically recrystallized zone, thermo-mechanically affected zone and heat affected zone and the micro-structures of the transverse cross-section were also showed. However, the author found out that the region of 6mm far away from shoulder circumference was affected by friction heat comprehensively, that is, hardness softened and that part of micro-structures were re-solid-solution or recrystallized, the author also knew that there is no mechanically deformation on heat affected zone but there are the flow of plastic deformation of $45^{\circ}$ direction on thermo-mechanically affected zone and the segregation of Al-Mg on nugget. The solid solution wt(%) of parent material as compared against of friction stir welded zone was comprehensively changed.

Electrical Properties of Metal-Oxide Quantum dot Hybrid Resistance Memory after 0.2-MeV-electron Beam Irradiation

  • Lee, Dong Uk;Kim, Dongwook;Kim, Eun Kyu;Pak, Hyung Dal;Lee, Byung Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.311-311
    • /
    • 2013
  • The resistance switching memory devices have several advantages to take breakthrough for the limitation of operation speed, retention, and device scale. Especially, the metal-oxide materials such as ZnO are able to fabricate on the flexible and visible transparent plastic substrate. Also, the quantum dots (QDs) embedded in dielectric layer could be improve the ratio between the low and the high resistance becauseof their Coulomb blockade, carrier trap and induced filament path formation. In this study, we irradiated 0.2-MeV-electron beam on the ZnO/QDs/ZnO structure to control the defect and oxygen vacancy of ZnO layer. The metal-oxide QDs embedded in ZnO layer on Pt/glass substrate were fabricated for a memory device and evaluated electrical properties after 0.2-MeV-electron beam irradiations. To formation bottom electrode, the Pt layer (200 nm) was deposited on the glass substrate by direct current sputter. The ZnO layer (100 nm) was deposited by ultra-high vacuum radio frequency sputter at base pressure $1{\times}10^{-10}$ Torr. And then, the metal-oxide QDs on the ZnO layer were created by thermal annealing. Finally, the ZnO layer (100 nm) also was deposited by ultra-high vacuum sputter. Before the formation top electrode, 0.2 MeV liner accelerated electron beams with flux of $1{\times}10^{13}$ and $10^{14}$ electrons/$cm^2$ were irradiated. We will discuss the electrical properties and the physical relationships among the irradiation condition, the dislocation density and mechanism of resistive switching in the hybrid memory device.

  • PDF

A High-Resolution Transmission Electron Microscopy Study of the Grain Growth of the Crystalline Silicon in Amorphous Silicon Thin Films (비정질 실리콘 박막에서 결정상 실리콘의 입자성장에 관한 고분해능 투과전자현미경에 의한 연구)

  • 김진혁;이정용;남기수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.85-94
    • /
    • 1994
  • A high-resolution transmission electron microscopy study of the solid phase crystallization of the amorphous silicon thin films, deposited on SiOS12T at 52$0^{\circ}C$ by low pressure chemical vapor deposition and annealed at 55$0^{\circ}C$ in a dry N$_{2}$ ambient was carried out so that the arrangement of atoms in the crystalline silicon and at the amorphous/crystalline interface of the growing grains could be understood on an atomic level. Results show that circular crystalline silicon nuclei have formed and then the grains grow to an elliptical or dendritic shape. In the interior of all the grains many twins whose{111} coherent boundaries are parallel to the long axes of the grains are observed. From this result, it is concluded that the twins enhance the preferential grain growth in the <112> direction along {111} twin planes. In addition to the twins. many defect such as intrinsic stacking faults, extrinsic stacking faults, and Shockley partial dislocations, which can be formed by the errors in the stacking sequence or by the dissociation of the perfect dislocation are found in the silicon grain. But neither frank partial dislocations which can be formed by the condensation of excess silicon atoms or vacancies and can form stacking fault nor perfect dislocations which can be formed by the plastic deformation are observed. So it is concluded that most defects in the silicon grain are formed by the errors in the stacking sequence during the crystallization process of the amorphous silicon thin films.

  • PDF

Understanding of Cleft Lip Managment by Review of Treatment History (역사적 고찰을 통한 구순열 치료의 이해)

  • Kim, Hui-Young;Myoung, Hoon;Lee, Jong-Ho;Lee, Suk-Keun;Choi, Jin-Young;Kim, Soung-Min
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.16 no.1
    • /
    • pp.37-49
    • /
    • 2013
  • Cleft lip is a common congenital facial deformity which might cause speech, hearing, appearance, and psychological disorder. For the purpose of appropriate management for the cleft lip patients according to their individual situations, reviews of the historical evolution for the cleft lip treatment were summarized. More than 15 English written articles with 4 related historical books were reviewed, and the chronology of the cleft lip management from ancient to recent twenty first century, via middle ages and Renaissance, were summarized. Multifactorial causes of cleft lip, before the modern understanding of embryological background of it, most management of cleft lip has been explained under the basis of religions and/or superstitions. As the anatomic and embryologic knowledges were known and revealed, various misconceptions were corrected continously, and the simple closure of the lip defect was also evoluted to the applications of plastic concept. Recently, cosmetic outcomes with functional results, such as speech, hearing, psychological status, have been considered importantly, under the multidiciplinary care system. For the better understanding of cleft lip management as a routine esthtetic and funtional reconstructive procedure, the various historical treatment trends were reviewed and summarized as time goes on. This review presentation will discuss the appropriate management for cleft lip patients.

  • PDF

The effects of the surface defects on the hydroformability of extruded aluminum tubes (알루미늄 압출 관재의 표면 결함이 하이드로포밍 성형에 미치는 영향도에 관한 연구)

  • Kim D. H.;Kim B. J.;Park K. S.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.247-250
    • /
    • 2005
  • The need for improved fuel efficiency, weight reduction has motivated the automotive industry to focus on aluminum alloys as a replacement for steel-based alloy. To cope with the needs for high structural rigidity with low weight, it is forecasted that substantial amount of cast components will be replaced by tubular parts which are mainly manufactured by the extruded aluminum tubes. The extrusion process is utilized to produce tubes and hollow sections. Because there is no weld seam, the circumferential mechanical properties may be uniform and advantageous for hydroforming. However the possibility of the occurrence of a surface defect is very high, especially due to the temperature increase from forming at high pressure when it comes out of the bearing and the roughness of the bearing, which cause the surface defects such as the dies line and pick-up. And when forming a extruded aluminum tube, the free surface of the tube becomes rough with increasing plastic strain. This is well known as orange peel phenomena and has a great effect not only on the surface quality of a product but also on the forming limit. In an attempt to increase the forming limit of the tubular specimen, in the present paper, surface asperities generated during the hydroforming process are polished to eliminate the weak positions of the tube which lead to a localized necking. It is shown that the forming limit of the tube can be considerably improved by simple method of polishing the surface roughness during hydroforming. And also the extent of the crack propagation caused by dies lines generated during the extrusion process is evaluated according to the deformed shape of the tube.

  • PDF

Volume Reduction of the Radioactive Solid Wastes in Hot Cell (핫셀 방사성 고체폐기물 감용)

  • 양송열;서항석;이형권;이은표;권형문;민덕기;김길수;조일제;전용범
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.109-116
    • /
    • 2003
  • The amount of radioactive waste is expected to be increased continuously because of the rapid growth of the domestic nuclear industry, full power operation of the HANARO reactor and the increased research activities of the nuclear fuel cycle. Accordingly the efforts are focused to achieve the handling of radioactive waste in safe and reduce the volume of radioactive waste. The PIEF is carrying out the PIE (post irradiation examination) of spent fuel rods related to the identification of cause defect and evaluation of integration safety. This study describes the technologies and experiences of compaction, shredding and cutting of the solid radioactive waste used in the PIE. The quantity of the high level waste was reduced by 1/12 using the 100-ton compressor installed in hot-cell. Also middle and low level waste was reduced by 1/8 using the 60-ton compressor installed in intervention area. Plastic drums were shredded by crusher to be compacted in the ratio of 1/5, used filters in the ratio of 1/6 and the number of drum is also reduced by cutting procedure for the non-volatile materials such as metal.

  • PDF

A Property of Crack Propagation at the Specimen of CFRP with Layer Angle (적층각도를 지닌 CFRP 시험편에서의 크랙전파 특성)

  • Hwang, Gue Wan;Cho, Jae Ung;Cho, Chong Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1013-1019
    • /
    • 2016
  • CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of $60^{\circ}$. This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens.

Orbital floor fracture repair with implants: a retrospective study

  • Lee, Yong Jig
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.4
    • /
    • pp.177-182
    • /
    • 2021
  • Background: Although prompt surgery after an orbital fracture is preferable, the actual timing of surgery in real-world settings varies. Therefore, this study investigated the outcomes of implant surgery for inferior orbital wall fractures by comparing three groups according to the time interval between the injury and surgery. Methods: A retrospective review was conducted of patients' medical charts and initial computed tomography images from 2009 to 2020. The time to treatment was chosen by patients or their guardians based on the patients' comorbidities and the physician's explanation. The patients were divided into three groups according to the time of surgery (group 1: 3-7 days, group 2: 8-14 days, group 3: 15 or more days). Data were collected on age, the time interval until surgery, the dimensions of the defect, the operation time, the follow-up period, and the postoperative paresthesia score (ranging from 0 to 10). The outcomes were evaluated using a 4-point scale: 4=good (no complications), 3=fair (no subjective symptoms), 2=poor (remaining paresthesia), and 1=very poor (strabismus and/or enophthalmos). Results: The study included 85 patients with unilateral fractures who underwent surgery from 3 to 93 days after injury. The overall score distribution of the surgical outcomes was as follows: good=63, fair=7, poor=6, and very poor=9. The three groups showed no significant differences in the transverse dimension of the injury (p=0.110) or the anteroposterior dimension (p=0.144). In groups 1, 2, and 3, the postoperative outcome scores were 3.84±0.37, 3.63±0.87, and 2.93±1.33 (p=0.083), and the percentage of patients with good outcomes was 84%, 81.25%, and 57.14%, respectively. Conclusion: Performing surgery using an artificial implant within 2 weeks of the injury showed better outcomes and fewer postoperative complications than when treatment was delayed.

A Study on Mechanical Properties of SM490-TMC Back Plate(40 mm) Steel by SAW Welding (SM490-TMC 후판(40 mm) 강재의 SAW 용접을 통한 기계적 특성 연구)

  • Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.88-93
    • /
    • 2021
  • SAW (Submerged Arc Welding) is often used for ship construction or welding pressure vessels and involves spraying a flux in a powder form to a welding site to a certain thickness and continuously supplying electrode wires therein. This welding method enables high current welding up to 1,500 to 3,000 A. Arc efficiency is higher than 95% and the technique allows clean work as it creates less welding fume, which is composed of fine metal oxide particles, and the arc beam is not exposed. In this study, SM490C-TMC thick plates were heterogeneously welded by SAW. Mechanical properties of welds were measured, and welds were assessed macroscopically and for adhering magnetic particles. The following conclusions were drawn. Bending tests showed no spots exploded on sample surfaces or any other defect, and plastic deformation testing confirmed sufficient weld toughness. These results showed the 1F welding method has no shortcomings in terms of bending performance.