• Title/Summary/Keyword: Plastic Crack Opening

Search Result 87, Processing Time 0.018 seconds

An Evaluation on the Effect of Reversed Plastic Zone on the Fatigue Crack Opening Behavior under 2-D Plane Stress (2차원 평면응력 상태에서 되풀이 소성역이 피로균열 열림 현상에 미치는 영향에 관한 연구)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1078-1084
    • /
    • 2005
  • The relationship between fatigue crack opening behavior and the reversed plastic zone sizes is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the opening behavior of fatigue crack, where the contact elements are used in the mesh of the track tip area. The smaller element size than reversed plastic zone size is used fer evaluating the distribution of reversed plastic zone. In the author's previous results the FEA could predict the crack opening level, which crack tip elements were in proportion to the theoretical reversed plastic zone size. It is found that the calculated reversed plastic zone size is related to the theoretical reversed plastic zone size and crack opening level. The calculated reversed plastic zone sizes are almost equal to the reversed plastic zone considering crack opening level obtained by experimental results. It can be possible to predict the crack opening level from the reversed plastic zone size calculated by finite element method. We find that the experimental crack opening levels correspond with the opening values of contact nodes on the calculated reversed plastic zone of finite element simulation.

EVALUATION MODEL FOR RESTRAINT EFFECT OF PRESSURE INDUCED BENDING ON THE PLASTIC CRACK OPENING OF A CIRCUMFERENTIAL THROUGH-WALL CRACK

  • Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • This paper presents a closed-form model for evaluating the restraint effect of pressure induced bending on the opening of a circumferential through-wall crack, which is considered plastic deformation behavior. Three-dimensional finite element analyses with different crack lengths, restraint conditions, pipe geometries, magnitudes of internal pressure, and tensile properties were used to investigate the influence of each parameter on the pressure-induced bending restraint on the crack opening displacement. From these investigations, an analytical model based on elastic-perfectly plastic material was developed in terms of the crack length, symmetric restraint length, mean radius to thickness ratio, axial stress corresponding to the internal pressure, and normalized crack opening displacement evaluated from a linear-elastic crack opening condition. Finite element analyses results demonstrate that the proposed analytical model reliably estimated the restraint effect of pressure-induced bending on the plastic crack opening of a circumferential through-wall crack and properly reflected the dependence on each parameter within the range over which the analytical expression was derived.

Finite Element Analysis for the Prediction of Fatigue Crack Opening Behavior Using Cyclic Crack Tip Opening Displacement (되풀이 균열 선단 열림 변위를 이용한 피로 균열 열림 거동 예측을 위한 유한 요소 해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1455-1460
    • /
    • 2006
  • The relationship between fatigue crack growth behavior and cyclic crack tip opening displacement is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the growth behavior of fatigue crack, where the contact elements are used in the mesh of the crack tip area. We investigate the relationship between the reversed plastic zone size and the changes of the cyclic crack tip opening displacement along the crack growth. We investigate the effect of the element size when predict fatigue crack opening behavior using the cyclic crack tip opening displacement obtained from FEA. The cyclic crack tip opening displacement is related to fatigue crack opening behavior.

A Study on the Determination of Closing Level for Finite Element Analysis of Fatigue Crack Closure

  • Choi, Hyeon-Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.401-407
    • /
    • 2000
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using 4-node isoparametric elements can predict fatigue crack closure behavior. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. The crack opening level for the constant mesh size increases linearly from initial crack growth. The crack opening level for variable mesh size, is almost flat after crack tip has passed the monotonic plastic zone. The prediction of crack opening level using the variable mesh size proportioning the reversed plastic zone size with the opening stress intensity factors presents a good agreement with the experimental data regardless of stress ratios.

  • PDF

Finite Element Analysis of Fatigue Crack Closure under Plane Strain State (평면변형률 상태 하에서 유한요소해석을 이용한 균열닫힘 거동 예측 및 평가)

  • Lee, Hak-Joo;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.202-207
    • /
    • 2004
  • An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested.

  • PDF

Evaluation Model for Restraint Effect of Pressure Induced Bending on the Circumferential Through-Wall Crack Opening Considering Plastic Behavior (소성거동을 고려한 원주방향 관통균열 열림에 미치는 압력유기굽힘의 구속효과 평가 모델)

  • Kim, Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1134-1141
    • /
    • 2006
  • This paper presents the model for evaluating restraint effect of pressure induced bending (PIB) on the circumferential through-wall crack opening displacement (COD), which considers plastic behavior of crack. This study performed three-dimensional elastic-plastic finite element (FE) analyses for different crack angle, restraint length, pipe geometry, stress level, and material conditions, and evaluated the influence of each parameter on the PIB restraint effect on COD. Based on these evaluations and additional perfectly-plastic FE analyses, a closed-form model to evaluate the restraint effect of PIB on the plastic crack opening of circumferential through-wall crack, was proposed as functions of crack angle, restraint length, radius to thickness ratio, axial stress corresponding to an internal pressure, and normalized COD evaluated from linear-elastic crack opening condition.

Finite Element Analysis for Fatigue Crack Closure Behavior Using Reversed Plastic Zone Size (되풀이 소성영역 크기를 이용한 피로 균열 닫힘 거동의 유한요소해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1703-1711
    • /
    • 2003
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behaviour of fatigue cracks in residual stress fields and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using contact elements can predict fatigue crack closure behaviour. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. Specially, the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point can precisely predict the opening level. By using the concept of the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point, the opening level of fatigue crack can be determined very well.

Numerical Analysis for Prediction of Fatigue Crack Opening Level

  • Choi, Hyeon Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1989-1995
    • /
    • 2004
  • Finite element analysis(FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials.

Effect of Restraint of Pressure Induced Bending on Crack Opening Evaluation for Circumferential Through-Wall Cracked Pipe (원주방향 관통균열 배관의 균열열림 평가에 미치는 압력유기굽힘의 구속효과)

  • Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1873-1880
    • /
    • 2001
  • The effects of restraint of pressure induced bending(PIB) on crack opening for circumferential through-wall crack in a pipe were investigated. In this study, the elastic and elastic-plastic finite element analyses were performed to evaluate crack opening displacement(COD) for various restraint conditions and crack size. The results showed the restraint of PIB decreased crack opening for a given crack size and tensile stress, and the decrease in crack opening was considerable for large crack and short restraint length. A1so, the effect was more significant in tole results of elastic-plastic analysis compared with in the elastic analysis results. In the elastic-plastic analysis results, tole restraint effect was increased with increasing applied tensile stress corresponding to internal pressure. Additionally, the restraint effect on COD was independent on the variation in pipe diameter and decreased with increasing pipe thickness, and It depended on not total restraint length but shorter restraint length for non-symmetrically restrained.

An Investigation about Dynamic Behavior of Three Point Bending Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.149-157
    • /
    • 2000
  • Computer simulations of the mechanical behavior of a three point bend specimen with a quarter notch under impact load are performed. The case with a load application point at the side is considered. An elastic-plastic von Mises material model is chosen. Three phases such as impact bouncing and bending phases are found to be identified during the period from the moment of impact to the estimated time for crack initiation. It is clearly shown that no plastic deformation near the crack tip is appeared at the impact phase. However it is confirmed that the plastic zone near the crack tip emerges in the second phase and the plastic hinge has been formed in the third phase. Gap opening displacement crack tip opening displacement and strain rate are compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study.

  • PDF