• Title/Summary/Keyword: Plastic Collapse

Search Result 297, Processing Time 0.024 seconds

Improving buckling response of the square steel tube by using steel foam

  • Moradi, Mohammadreza;Arwade, Sanjay R.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1017-1036
    • /
    • 2014
  • Steel tubes have an efficient shape with large second moment of inertia relative to their light weight. One of the main problems of these members is their low buckling resistance caused from having thin walls. In this study, steel foams with high strength over weight ratio is used to fill the steel tube to beneficially modify the response of steel tubes. The linear eigenvalue and plastic collapse FE analysis is done on steel foam filled tube under pure compression and three point bending simulation. It is shown that steel foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior is investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve, in a way that, the failure mode change from local buckling to yielding.

Dynamic nonlinear member failure propagation in truss structures

  • Malla, Ramesh B.;Nalluri, Butchi B.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.111-126
    • /
    • 2000
  • Truss type structures are attractive to a variety of engineering applications on earth as well as in space due to their high stiffness to mass ratios and ease of construction and fabrication. During the service life, an individual member of a truss structure may lose load carrying capacity due to many reasons, which may lead to collapse of the structure. An analytical and computational procedure has been developed to study the response of truss structures subject to member failure under static and dynamic loadings. Emphasis is given to the dynamic effects of member failure and the propagation of local damage to other parts of the structure. The methodology developed is based on nonlinear finite element analysis technique and considers elasto-plastic material nonlinearity, postbuckling of members, and large deformation geometric nonlinearity. The pseudo force approach is used to represent the member failure. Results obtained for a planar nine-bay indeterminate truss undergoing sequential member failure show that failure of one member can initiate failure of several members in the structure.

Automated yield-line analysis of beam-slab systems

  • Johnson, David
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.529-539
    • /
    • 1995
  • The rigid-plastic yield-line analysis of isotropically reinforced concrete slabs acting in conjunction with torsionally weak supporting beams is developed as the lower-bound form of a linear programming formulation. The analysis is extended to consider geometric variation of chosen yield-line patterns by the technique of sequential linear programming. A strategy is followed of using a fine potential yield-line mesh to identify possible collapse modes, followed by analysis using a coarser, simplified mesh to refine the investigation and for use in conjunction with geometric optimization of the yield-line system. The method is shown to be effective for the analysis of three slabs of varying complexity. The modes detected by the fine and simplified analyses are not always similar but close agreement in load factors has been consistently obtained.

A Methodolody of Considering the Failure of Supports in Evaluating Tunnel Safety Factors (터널의 안전율 평가 시 지보재 파괴 고려 방안 연구)

  • You Kwang-Ho;Hong Keun-Young;Park Yeon-Jun;Lee Hyun-Koo;Kim Jea-Kwon
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.213-224
    • /
    • 2005
  • The safety factor of a tunnel considering the failure of supports is important because the failure of supports might cause the collapse of the tunnel. In the previous studies, shotcrete was modelled as beam elements and the failure of the shotcrete was checked according to the allowable working stress concept. In this study, shotcrete was modelled by both beam elements and continuum (elasto-plastic) elements. Safety factors of tunnels were estimated by two dimensional numerical analysis with varying rock mass class, coefficient of lateral pressure, thickness of shotcrete, rock bolt reinforcement and excavation method. Also the study suggested not only a proper amount of supports but also modelling method.

  • PDF

The Behavior of Local Buckling for Steel Circular Tubes Subject to Cyclic Axial Loads (반복 축하중을 받아 국부좌굴을 수반하는 원형강관 부재의 복원력 특성)

  • Lee Sang-Ju;Lee Dong-Woo;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.347-354
    • /
    • 2006
  • In this paper, we work with steel circular tubes and propose analysis model which can consider local buckling that it has an effect on failure of steel structures and induce the relation between loading and deformation. First of all, in respect to axial symmetry local buckling, which is simplest case, elasto-plastic behavior acting only axial loads is object Therefore, it suggests analysis model for axial symmetry local buckling. And that is explainable the process from increasing internal force to decreasing passing maximum internal force. Besides, we induce the relation between the axial force and axial deformation.

  • PDF

Investigation of possible causes of sinkhole incident at the Zonguldak Coal Basin, Turkey

  • Genis, Melih;Akcin, Hakan;Aydan, Omer;Bacak, Gurkan
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.177-185
    • /
    • 2018
  • The subsidence mechanism of ground surface is a complex phenomenon when multiple seam coal mining operations are carried out. Particularly, the coal mining beneath karstic formations causes a very special form of subsidence. The subsidence causes elasto-plastic deformation of the karstic layers and the collapse of cavities leads to dolinization and/or sinkhole formation. In this study, a sinkhole with a depth of 90 m and a width of 25 m formed in Gelik district within the coal-basin of Zonguldak (NW, Turkey) induced by multiple seam coal mining operations in the past has been presented as a case-history together with two-dimensional numerical simulations and InSAR monitoring. The computational results proved that the sinkhole was formed as a result of severe yielding in the close vicinity of the faults in contact with karstic formation due to multiple seam longwall mining at different levels.

Probabilistic Evaluation Methodology for Nuclear Components (원전 주요기기의 확률론적 평가 기법)

  • Lee, Joon-Seong;Kwak, Sang-Log;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.459-464
    • /
    • 2001
  • For major nuclear power plant components periodic inspections and integrity assessments are needed for the safety. But many flaws are undetectable due to sampling inspection. Probabilistic integrity assessment is applied to take into consideration of uncertainty and variance of input parameters arise due to material properties, applied load and undetectable flaws. This paper describes a Probabilistic Fracture Mechanics(PFM) analysis based on Monte Carlo(MC) algorithms. Taking important parameters as probabilistic variables such as fracture toughness, crack growth rate and flaw shape, failure probability of major nuclear power plant components is archived as a results of MC simulation. For the verification of these analysis, a comparison study of the PFM analysis using other commercial code, mathematical method is carried out and a good agreement was observed between those results.

  • PDF

Application of FAD on Pressure Tube for the Probabilitic Integrity Assessment (파손평가선도를 이용한 압력관 결함의 확률론적 건전성 평가)

  • Kwak, Sang-Log;Wang, Jong-Bae;Park, Youn-Won;Lee, Joon-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at uninspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of uninspected pressure tube. All the current integrity evaluations procedures are based on conventional deterministic approaches. So it is expected that the results obtained are too conservative to perform a rational evaluation of lifetime. More realistic failure criteria, based on FAD are also proposed for the probabilistic analysis. As a result of this study failure probabilities for various conditions are calculated, and examined application of FAD and LBB concept.

A Study on FAD Development for Probabilistic Pressure Tube Integrity Assessment (압력관의 확률론적평가에 타당한 파손평가선도 작성에 관한 연구)

  • Kwak, Sang-Log;Wang, Jong-Bae;Choi, Young-Hwan;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1211-1215
    • /
    • 2003
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at un-inspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of un-inspected pressure tube. But all the current integrity evaluations procedures are based on conventional deterministic approaches. So many integrity evaluation parameters are not directly apply to probabilistic analysis. As a result of this study failure assessment diagram are proposed based on test data.

  • PDF

CRUSH BEHAVIOR OF METALLIC FOAMS FOR PASSENGER CAR DESIGN

  • Cheon, S.S.;Meguid, S.A.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • In this paper, a modified and representative unit cell model was employed to study the crush behaviour of a closed cell metallic foam. The unit cell which captures the main geometrical features of the metallic foam considered was used to simulate crush behaviour in metallic foams. Both analytical using limit analysis and numerical using the finite element method were used to study the collapse behaviour of the cell. The analytical crushing stress of the foam was compared with FE results and was found to be in good agreement.