• 제목/요약/키워드: Plastic Anisotropy

검색결과 127건 처리시간 0.021초

AZ31 마그네슘 합금 판재의 기계적 특성 평가(1) (Evaluation of Mechanical Properties for AZ31 Magnesium Alloy(1))

  • 원성연;오상균;;박진기;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2004
  • The mechanical properties and optical micrographs are studied for rolled magnesium alloy sheet with hexagonal close packed structure(HCP) at room and elevated temperatures. Tensile properties such as tensile strength, elongation, R-value and n-value are also measured for AZ31 magnesium alloy. Magnesium with strong texture of basal plane parallel to the rolling direction usually has high R-value and plastic anisotropy at room temperature. As temperature increases, the R-value for AZ31 magnesium sheet decreases. In addition, the AZ31 sheet becomes isotropy and recrystallization above $200^{\circ}C$. Formability of magnesium alloy sheets remarkably poor at room temperature is improved by increasing temperature. Sheet forming of magnesium alloy is practically possible only at high temperature range where plastic anisotropy disappears.

  • PDF

EMAT를 이용한 냉연강판의 소성이방성 측정 (Measurement of plastic anisotropy of cold rolled steel sheets using electromagnetic acoustic transducer)

  • 황의찬;장경영;안봉영;이승석;김수광;김상영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.383-388
    • /
    • 1994
  • Ultrasonic sensor for evaluating plastic anisotropy was developed. Magnetostrictive type EMAT is sensor to transmit and receive the Lamb wave using magnetostriction. It is suitable for on line processing because of transmitting and receiving ultrasonic without contact ODCs(orientation distribution coefficients), W $_{400}$. W $_{420}$. W $_{440}$. were respectively calculated using zeroth order Lamb wave velocities, the calculated ODCs was used for evaluating plastic anisotropy, the results was compared for mean values of destructive tests. Besides, the Lorentz EMAT for generating longitudinal wave and two shear waves simultaneously and the Lorentz type EMAT for measuring SH wave velocities were made. ODCs were calculated using the measured resonant modes and velocities. the results of two methods show possibility of an line processing measurement.

  • PDF

Glass Fiber 배향성이 충격 파괴에 미치는 영향: 사출-구조 연성해석 (Effect of Glass Fiber Orientation on Impact Fracture Properties: Coupled Injection Molding & Structural Analysis)

  • 김웅
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.129-135
    • /
    • 2023
  • The use of engineering plastic products in internal combustion engine and electric cars to improve stiffness and reduce weight is increasing significantly. Among various lightweight materials, engineering plastics have significant advantages such as cost reduction, improved productivity, and weight reduction. In particular, engineering plastics containing glass fibers are used to enhance stiffness. However, the stiffness of glass fibers can increase or decrease depending on their orientation. Before developing plastic products, optimal designs are determined through injection molding and structural analysis to enhance product reliability. However, reliable analysis of products with variable stiffnesses caused by anisotropy cannot be achieved via the conventional isotropic structural analysis, which does not consider anisotropy. Therefore, based on the previously reported study "the Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis," this study aims to investigate the structural analysis and degradation mechanisms of various polymers. In particular, this study elucidates the actual mechanism of plastic fracture by analyzing various fracture conditions and their corresponding simulations. Furthermore, the objective of this study is to apply the injection molding and structural coupled analysis mechanism to develop engineering plastic products containing glass fibers. In addition, the study aims to apply and improve the plastic fracture mechanism in actual products by exploring anisotropy and stiffness reduction owing to the unfilled polymer weld line.

신장계에 의한 소성변형비 자동측정법의 평가에 관한 연구 (A Study on the Evaluation of the Automatic Measurement Method of Plastic Strain Ratio by Two Extensometers)

  • 김인수
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.504-512
    • /
    • 2003
  • The plastic strain ratios(R-values) of low carbon steel sheets were determined by the automatic strain measurement method using two extensometers, the indirect photo method for the same tensile specimen during tensile test and the indirect method for the specimen after tensile test. The experimental results showed that the measured plastic strain ratios from the automatic strain measurement method using two extensometers coincided with those from the indirect photo method and the indirect method for all tensile specimens. In addition, the strain dependence of plastic strain ratios could be continuously recorded and the anisotropy of the strength coefficient, K, and strain hardening exponent, n, could be automatically calculated in three directions by computer through the use of two extensometers. The experimental results showed that the strain dependence of R-value was related to the anisotropy of strain hardening exponent in low carbon steel sheets.

순 티타늄 판재의 변형 특성 및 성형성 평가 (A Study on Plastic Deformation Characteristics and Formability for Pure Titanium Sheet)

  • 인정훈;정기조;이현석;김정한;김진재;김영석
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.301-313
    • /
    • 2018
  • In this paper, tensile test was performed on pure titanium sheet (CP Ti sheet) with HCP structure in each direction to evaluate mechanical and surface properties and analyze microstructural changes during plastic deformation. We also evaluated forming limits of Ti direction in dome-type punch stretching test using a non-contact three-dimensional optical measurement system. As a result, it was revealed the pure titanium sheet has strong anisotropic property in yield stress, stress-strain curve and anisotropy coefficient according to direction. It was revealed that twinning occurred when the pure titanium sheet was plastic deformed, and tendency depends differently on direction and deformation mode. Moreover, this seems to affect the physical properties and deformation of the material. In addition, it was revealed the pure titanium sheet had different surface roughness changes in 0 degree direction and 90 degree direction due to large difference of anisotropy, and this affects the forming limit. It was revealed the forming limit of each direction obtained through the punch stretching test gave higher value in 90 degree direction compared with forming limit in 0 degree direction.

소성불안정성에 의한 관재 하이드로포밍 공정에서의 터짐 불량 예측 (A Prediction of Bursting Failure in Tube Hydroforming Process Based on Plastic Instability)

  • 김상우;김정;박훈재;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity fur anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy parameter, strain hardening exponent on bursting pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

  • PDF

가스분무로 제조된 NdFeB 합금분말의 강소성변형을 통한 결정립 미세화 및 이방성 제어 (Control of Grain Refinement and Anisotropy of NdFeB Alloy Powder by Severe Plastic Deformation Fabricated by the Gas Atomization Process)

  • 조주영;박상민;자비드 후세인;송명석;김택수
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.124-128
    • /
    • 2022
  • NdFeB magnets have been positioned as the core materials in advanced technologies such as MRI (magnetic resonance imaging), FA (factory automation system), robot, motors, and so on based on the highest magnetic properties. To effectively improve the refined microstructure, the plastic deformation has been known as the good alternatives by the recrystallization. However, it has been regarded as being impossible because of the few slip systems in the RE-Fe-B magnets at room temperature. The purpose of this study was to investigate the possibility of control of grain refinement and magnetic anisotropy of NdFeB alloy powder by the severe plastic deformation. The NdFeB magnet powder was fabricated by gas atomization process, and the powder was pre-compacted at high temperature. The pre-compacted billets were deformed by HPT (high pressure torsion), and then the deformed billets were observed microstructure and magnetic properties. After the HPT process at room temperature, the grain size decreased with increasing because of the melted Nd-rich phase, and the anisotropy of Nd2Fe14B phase was formed after the HPT process.

디프도로잉 시 DP강의 집합조직 및 이방성 거동 모사 (Simulation of Texture Evolution and Anisotropic Properties in DP Steels during Deep Drawing Process)

  • 송영식;김병진;한성호;진광근;최시훈
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.517-522
    • /
    • 2008
  • A visco-plastic self-consistent (VPSC) polycrystal model has been applied to simulate texture simulation and anisotropic properties of DP steels during deep drawing process. In order to evaluate the strain path during deep drawing, a steady state was assumed in the flange part of deep drawn cup. The final stable orientations were strongly dependent on the initial location in the blank. The evolution of anisotropy of DP steel sheets has been demonstrated through comparison of plastic strain rate vector at the different plastic strain levels.

알루미늄 5182/폴리프로필렌/알루미늄 5182 샌드위치 판재의 소성변형비 및 평면이방성 (Plastic Strain Ratio and Planar Anisotropy of AA5182/Polypropylene/AA5182 Sandwich Sheets)

  • 김기주;정효태
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.365-373
    • /
    • 2004
  • The sheet formability of single AA5182 sheets and sandwich sheets comprising of AA5182/polypropylene/AA5182 (AA/PP/AA) was studied. Rolling without lubrication and subsequent recrystallization annealing led to the formation of favorable {111}//ND fiber textures in AA5182 sheets, which provided a higher plastic strain ratio of $R_m=1.5$. $R_m$ value of 1.58 was obtained in the AA/PP/Ah sandwich sheet sample. Furthermore, a proper combination of the sample direction of the upper and lower skin sheet gave rise to an optimization of the sheet formability of the sandwich sheets.

디프드로임 시 DP강의 집합조직 및 이방성 거동 모사 (Simulation of Texture Evolution and Anisotropic Properties in DP steels during Deep Drawing Process)

  • 송영식;김병진;한성호;진광근;최시훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.396-399
    • /
    • 2008
  • A visco-plastic self-consistent (VPSC) polycrystal model has been applied to simulate texture simulation and anisotropic properties of DP steels during deep drawing process. In order to evaluate the strain path during deep drawing, a steady state was assumed in the flange part of deep drawn cup. The final stable orientations were strongly dependent on the initial location in the blank. The evolution of anisotropy of DP steel sheets has been demonstrated through comparison of plastic strain rate vector at the different plastic strain levels.

  • PDF