• Title/Summary/Keyword: Plasmid-mediated quinolone resistance (PMQR)

Search Result 12, Processing Time 0.017 seconds

Mutation in gyrA gene of nalidixic acid-resistant Salmonella isolates isolated from poultry slaughterhouse (닭 도축장에서 분리한 nalidixic acid 내성 Salmonella 균의 gyrA 유전자 돌연변이)

  • Cho, Jae-Keun;Son, Kyu-Hee;Kim, Kyung-Hee;Kim, Jeong-Mi;Park, Dae-Hyun;Lee, Jung-Woo
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.3
    • /
    • pp.153-159
    • /
    • 2019
  • The objective of this study was to identify mutations in the quinolone resistance determining region (QRDR) of the gyrA, gyrB, parC and parE genes, and the presence of plasmid-mediated quinolone resistance (PMQR) genes: qnrA, qnrB, qnrS, aac(6')-lb-cr and qepA in 40 nalidixic acid- resistant ($NA^R$) Salmonella isolates isolated from poultry slaughterhouse. The MIC of NA and ciprofloxacin for 40 $NA^R$ Salmonella isolates was $128{\sim}512{\mu}g/mL$ and < $0.125{\sim}0.25{\mu}g/mL$, respectively. The Salmonella isolates were resistant to NA (100%), gentamicin (5.0%) and ampicillin (2.5%). All $NA^R$ Salmonella isolates represented point mutation in codons Aspartic acid(Asp)-87 (90%) and Serine(Ser)-83 (10%) of QRDR of gyrA gene: $Asp87{\rightarrow}glycine$, $Ser83{\rightarrow}tyrosine$. No mutations were observed in QRDR of the gyrB, parC and parE gene. Moreover PMQR genes was not found in any of the tested isolates. Our findings showed that DNA gyrase is the primary target of quinolone resistance and a single mutation in codon Asp87 and Ser83 of the gyrA gene can confer resistance to NA and reduced susceptibility ciprofloxacin in Salmonella isolates.

Distribution of Antimicrobial Resistant Genes in Acinetobacter calcoaceticus-baumannii Complex Isolated from Clinical Specimens in Chungcheong, Korea (충청지역의 임상검체로부터 분리된 Acinetobacter calcoaceticus-baumannii Complex를 대상으로 항균제 내성 유전자 비교분석)

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.427-434
    • /
    • 2017
  • Species that belong to the Acinetobacter calcoaceticus-baumannii (Acb) complex are major causes of hospital-acquired infections. They are important opportunistic pathogens. These species are usually multidrug resistant (MDR), and the therapeutic options to treat the infections caused by these species are limited. In the present study, we investigated fluoroquinolone resistance mechanisms in 53 ciprofloxacin resistant Acinetobacter species isolates in Chungcheong, Korea. Antimicrobial susceptibilities were determined using the disk-diffusion method. Detections of genes and identification of mutations associated with fluoroquinolone resistance were carried out using PCR and DNA sequencing. In our study, 47 out of 53 ciprofloxacin resistant Acinetobacter isolates harbored sense mutations at the 83rd residue (serine to leucine) in the gyrA gene as well as at the 80th residue (serine to leucine) in the parC gene. Among the 47 isolates harboring sense mutations in gyrA and parC gene, 44 isolates were A. baumannii and 3 isolates were A. pittii. Plasmid-mediated quinolone resistance (PMQR) determinants were detected in isolates in our study. Among the 46 ciprofloxacin resistant A. baumannii isolates, 41 showed type A, B, or F banding patterns on their REP-PCR profiles. This result suggests that clonal relation and horizontal spreading of the bacterial isolates have been around hospitals in Chungcheong area. To prevent colonization and disseminations of fluoroquinolone resistance Acb complex isolates, continuous investigation and monitoring of antimicrobial resistant determinants of MDR isolates are needed.