• Title/Summary/Keyword: Plasma sputtering

Search Result 611, Processing Time 0.032 seconds

Simultaneous Realization of Electromagnetic Shielding and Antibacterial Effect of Al Doped ZnO Thin Films onto Glass Substrate (유리 기판 위에 증착된 Al Doped ZnO 박막을 이용한 전자파 차폐 및 항균 특성의 동시 구현)

  • Choi, Hyung-Jin;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.279-283
    • /
    • 2016
  • In this study, we intended to achieve both antibacterial properties and electromagnetic shielding using the Al-doped ZnO (AZO) films. FTS (Facial Target Sputtering) magnetron sputtering was used for the AZO thin films instead of the conventional RF sputtering because the FTS sputtering could avoid the damage for the plasma as well as fabrication of thin films with a high quality. The 300-nm thick AZO thin films grown on glass substrate showed a resistivity of about $7{\times}10^{-4}{\Omega}-cm$ and a transmittance of about 90% at a wavelength of 550 nm. AZO thin films were investigated for the electromagnetic shielding effectiveness measured by 2-port network method at 1.5 ~ 3 GHz. The AZO (300 nm)/glass films showed an EMI shielding effectiveness of approximately 27 dB. An antibacterial effect was measured by the film attachment method (JIS Z 2801). The percent reductions of bacteria by AZO films were 99.99668% and 99.99999% against Staphylococcus aureus and Escherichia coli, respectively.

Magnetron Sputtering Technology의 연구 및 개발 방향에 대한 동향

  • Park, Jang-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.95-95
    • /
    • 2012
  • 스터퍼링 기술이 1852년 Grove에 의해서 최초 발견되어 1979년 Chapin에 의해서 planar magnetron cathode 개발로 진공코팅기술의 새로운 영역을 열게 되어 현재까지 디스플레이, 반도체, 태양전지, 광학산업 및 전자부품 등 나노 산업에 필수적으로 적용되고 있다. 스퍼터링 입자는 운동량 전달에 의한 것으로 운동량을 갖는 나노 스퍼터링 입자는 기판에 대한 박막의 부착력이 우수하고 대면적에 균일하고 재현성 있게 성막되는 특징을 갖고 있다. 마그네트론 스퍼터링 기술이 산업에 응용되면서 주로 4분야에서 많은 연구, 개발이 되어져 왔다. 첫째는 타겟의 고순도 및 고밀도화와 더불어 가격이 고가로 됨에 따라 타겟 사용효율의 향상이다. 플라즈마를 발생시키는 캐소드의 자기회로를 1차원, 2차원 및 회전운동을 통해서 사용효율을 향상시키고 있다. 둘째는 기판에 대해서 박막특성이 균일하도록 코팅하는 것이다. 디스플레이에서는 글래스 기판이 대면적으로 됨에 따라서 핸들링이 어려워져 여러 개의 캐소드 자기회로를 선형적으로 이동시켜 박막두께분포를 최적화하며 반응성 가스를 사용해서 균일한 특성의 박막을 제작하는 경우에는 가스분사관과 배기펌프계의 기하학적 위치 및 가스 유동학적 해석이 필요하다. 셋째는 스퍼터링 입자의 이온화로 의한 박막의 특성향상과 반도체 trench의 높은 aspect ratio hole을 채우는 것이다. 이온화 방법으로는 inductively coupled plasma (ICP), microwave amplified (MA), high power impulse (HIPI), hollow cathode magnetron (HCM), self-sustained sputtering 등이 사용되어져 왔으며 최근에는(neutral beam-assisted sputtering (NBAS)에 의한 박막특성향상 방법이 발표되고 있다. 넷째는 플라즈마 및 박막두께 시뮬레이션에 대해서 많은 발표가 되고 있다. 본 발표에서는 상기의 4 분야를 포함한 향후 개발방향에 대해서 소개할 예정이다.

  • PDF

Characterization of the Crystallized ITO Thin Films Grown at a Low Temperature by Off-axis RF Magnetron Sputtering (Off-axis RF 마그네트론 스퍼터링법을 이용하여 저온에서 결정화된 ITO 박막의 특성)

  • Choi, Hyung-Jin;Jung, Hyun-June;Hur, Sung-Gi;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.126-130
    • /
    • 2011
  • In this study, off-axis magnetron sputtering was used for the crystallized ITO thin films at a low temperature of about $120^{\circ}C$ instead of the conventional RF sputtering because the off-axis sputtering can avoid the damage for the plasma as well as fabrication of thin films with a high quality. The ITO thin films grown on PET substrate at $120^{\circ}C$ were crystallized with a (222) preferred orientation. 58-nm thick ITO films showed a resistivity of about $2{\times}10-4{\Omega}{\cdot}cm$ and a transmittance of about 75% at a wavelength of 550 nm. The transmittance of the ITO thin films by an insertion of SiO2 thin films on ITO films was improved.

The Properties of Multi-Layered Optical Thin Films Fabricated by Pulsed DC Magnetron Sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조된 다층 광학박막의 특성)

  • Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.211-226
    • /
    • 2019
  • Optical thin films were deposited by using a reactive pulsed DC magnetron sputtering method with a high density plasma(HDP). In this study, the effect of sputtering process conditions on the microstructure and optical properties of $SiO_2$, $TiO_2$, $Nb_2O_5$ thin films was clarified. These thin films had flat and dense microstructure, stable stoichiometric composition at the optimal conditions of low working pressure, high pulsed DC power and RF power(HDP). Also, the refractive index of the $SiO_2$ thin films was almost constant, but the refractive indices of $TiO_2$ and $Nb_2O_5$ thin films were changed depending on the microstructure of these films. Antireflection films of $Air/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/Glass$ structure designed by Macleod program were manufactured by our developed sputtering system. Transmittance and reflectance of the manufactured multilayer films showed outstanding value with the level of 95% and 0.3%, respectively, and also had excellent durability.

Pulsed Magnetron Sputtering Deposit ion of DLC Films Part I : Low-Voltage Bias-Assisted Deposition

  • Oskomov, Konstantin V.;Chun, Hui-Gon;You, Yong-Zoo;Lee, Jing-Hyuk;Kim, Kwang-Bok;Cho, Tong-Yul;Sochogov, Nikolay S.;Zakharov, Alexender N.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Pulsed magnetron sputtering of graphite target was employed for deposition of diamond-like carbon (DLC) films. Time-resolved probe measurements of magnetron discharge plasma have been performed. It was shown that the pulsed magnetron discharge plasma density ($∼10^{17}$ $m^{-3}$ ) is close to that of vacuum arc cathode sputtering of graphite. Raman spectroscopy was sed to examine DLC films produced at low ( $U_{sub}$ / < 1 kV) pulsed bias voltages applied to the substrate. It has been shown that maximum content of diamond-like carbon in the coating (50-60%) is achieved at energy per deposited carbon atom of $E_{c}$ =100 eV. In spite of rather high percentage of $sp^3$-bonded carbon atoms and good scratch-resistance, the films showed poor adhesion because of absence of ion mixing between the film and the substrates. Electric breakdowns occurring during the deposition of the insulating DLC film also thought to decrease its adhesion.

The Characteristics of the Oxide Layer Produced on the Plasma Nitrocarburized Compound Layer of SCM435 Steel by Plasma Oxidation (플라즈마 산질화처리된 SCM435강의 표면경화층의 미세조직과 특성)

  • Jeon Eun-Kab;Park Ik-Min;Lee Insup
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.265-269
    • /
    • 2004
  • Plasma nitrocarburising and post oxidation were performed on SCM435 steel by a pulsed plasma ion nitriding system. Plasma oxidation resulted in the formation of a very thin ferritic oxide layer 1-2 $\mu\textrm{m}$ thick on top of a 15~25 $\mu\textrm{m}$ $\varepsilon$-F $e_{2-3}$(N,C) nitrocarburized compound layer. The growth rate of oxide layer increased with the treatment temperature and time. However, the oxide layer was easily spalled from the compound layer either for both oxidation temperatures above $450^{\circ}C$, or for oxidation time more than 2 hrs at oxidation temperature $400^{\circ}C$. It was confirmed that the relative amount of $Fe_2$$O_3$, compared with $e_3$$O_4$, increased rapidly with the oxidation temperature. The amounts of ${\gamma}$'-$Fe_4$(N,C) and $\theta$-$Fe_3$C, generated from dissociation from $\varepsilon$-$Fe_{2-3}$ /(N,C) phase during $O_2$ plasma sputtering, were also increased with the oxidation temperature.e.

Laterally Encapsulated Cathode Structure for DC Plasma Display Panels

  • Esfahani, M.Mokhlespour;Mohajerzadeh, S.;Goodarzi, A.;Rouhi, N.;Tarighat, R.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1233-1236
    • /
    • 2005
  • We report a novel approach for encapsulating of cathode electrodes in DC plasma pixels. Anode and cathode electrodes are laterally placed on a single substrate. The encapsulated electrode minimizes the sputtering of the cathode without significantly altering the turn-on voltage-pressure characteristics. An abnormal glow in current-voltage characteristics is also observed.

  • PDF

Fabrication of IGZO-based Oxide TFTs by Electron-assisted Sputtering Process

  • Yun, Yeong-Jun;Jo, Seong-Hwan;Kim, Chang-Yeol;Nam, Sang-Hun;Lee, Hak-Min;O, Jong-Seok;Kim, Yong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.2-273.2
    • /
    • 2014
  • Sputtering process has been widely used in Si-based semiconductor industry and it is also an ideal method to deposit transparent oxide materials for thin-film transistors (TFTs). The oxide films grown at low temperature by conventional RF sputtering process are typically amorphous state with low density including a large number of defects such as dangling bonds and oxygen vacancies. Those play a crucial role in the electron conduction in transparent electrode, while those are the origin of instability of semiconducting channel in oxide TFTs due to electron trapping. Therefore, post treatments such as high temperature annealing process have been commonly progressed to obtain high reliability and good stability. In this work, the scheme of electron-assisted RF sputtering process for high quality transparent oxide films was suggested. Through the additional electron supply into the plasma during sputtering process, the working pressure could be kept below $5{\times}10-4Torr$. Therefore, both the mean free path and the mobility of sputtered atoms were increased and the well ordered and the highly dense microstructure could be obtained compared to those of conventional sputtering condition. In this work, the physical properties of transparent oxide films such as conducting indium tin oxide and semiconducting indium gallium zinc oxide films grown by electron-assisted sputtering process will be discussed in detail. Those films showed the high conductivity and the high mobility without additional post annealing process. In addition, oxide TFT characteristics based on IGZO channel and ITO electrode will be shown.

  • PDF

A study on the Characteristics of MgO Thin Films Deposited by Bipolar pulse power (Bipolar pulse power를 사용하여 증착한 MgO 박막의 특성에 관한 연구)

  • Kim, Young-Su;Kim, Seung-Chan;Song, Geun-Yeoung;Choi, Hoon-Young;Jung, Hai-Young;Seo, Jung-Hyun;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.167-169
    • /
    • 2003
  • AC PDP(Plasma Display panel)에서 MgO 보호막은 방전공간에 직접 노출되어 있기 때문에, AC PDP의 수명과 방전 특성이 직접적인 영향을 미친다. 그동안 보다 좋은 특성의 MgO 보호막을 증착하기 위한 연구가 Magnetron-sputtering, E-beam, ion-plating 등 여러 가지 방법에 의해 진행되어 왔다. 본 논문에서는 Bipolar pulse power를 사용하여 sputtering 방법으로 MgO 보호막을 증착하여, 그 전기적, 광학적 특성을 기존의 magnetron-sputtering 방법으로 증착한 MgO 보호막과 비교하였다. 그 결과 Bipo1ar pulse power를 이용한 MgO 보호막의 결정립이 더 크게 나타났으며 그것으로부터 AC PDP의 수명향상에 효과가 있을 것으로 사료된다.

  • PDF