• Title/Summary/Keyword: Plasma sputtering

Search Result 611, Processing Time 0.026 seconds

Synthesis and Properties of a Ge2Sb2Te5 Sputtering for Use as a Target by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Ge2Sb2Te5 스퍼터링 타겟 제조 및 특성)

  • Bang, C.W.;Kim, K.B.;Lee, J.K.
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.137-141
    • /
    • 2014
  • In this study, we report the sintering behavior and properties of a $Ge_2Sb_2Te_5$ alloy powders for use as a sputtering target by spark plasma sintering. The effect of various sintering parameters, such as pressure, temperature and time, on the density and hardness of the target has been investigated in detail. Structural characterization was performed by scanning electron microscopy and X-ray diffraction. Hardness and thermal properties were measured by differential scanning calorimetry and micro-vickers hardness tester. The density and hardness of the sintered $Ge_2Sb_2Te_5$ materials were 5.8976~6.3687 $g/cm^3$ and 32~75 Hv, respectively.

$NO_x$ Sensing Characteristic of $TiO_2$ Thin Film Deposited by R.F Magnetron Sputtering (R.F 마그네트론 스퍼트링으로 작성된 $TiO_2$박막의 $NO_x$ 감지 특성)

  • 고희석;박재윤;박상현
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.567-572
    • /
    • 2002
  • In these days, diesel vehicle or power plant emits $NO_X\; and SO_2$ which cause air pollution like acid-rain, ozone layer destroy and optical smoke, therefore there are many kinds of methods considered for removing them such as SCR, catalyst, plasma process, and plasma-catalyst hybrid process. T$TiO_2$ is commonly used as catalyst to remove $NO_X$ gas because it have very excellent chemical characteristic as photo catalyst. In this paper, $NO_X$ sensing characteristic of $TiO_2$ thin film deposited by R.F Magnetron sputtering is investigated. A finger shaped electrode on $Al_2$O$_3$ substrate is designed and $TiO_2$ is deposited on the electrode by the magnetron sputtering deposition system. Chemical composition of the deposited $TiO_2$ thin film is $TiO_{1.9}$ by RBS analysis. When the UV is irradiated on it with flowing air, capacitance of $TiO_2$ thin film increases, however, when NO gas is put into the system with air, it immediately decreases because of photo chemical reaction. and it monotonously decreases with increasing NO concentration.

Influence of in-situ remote plasma treatment on characteristics of amorphous indium gallium zinc oxide thin film-based transistors

  • Gang, Tae-Seong;Gu, Ja-Hyeon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.257-257
    • /
    • 2011
  • The amorphous indium-gallium-zinc-oxide (a-IGZO) materials for use in high performance display research fields are strongly investigated due to its good performance, such as high mobility and better transparency. However, the stability of a-IGZO materials is increasingly becoming one of critical issues due to the sub-gap electron trap sites induced by rough interfaces during deposition processing. It is well-known that the threshold voltage shift is related to interface roughness and oxygen vacancy formed by breaking weak chemical bonds. Here, we report the better properties of transparent oxide transistors by reducing the threshold voltage shift with an external rf plasma supported magnetron sputtering system. Mainly, our sputtering method causes the surface of sample to be sleek, so that it prevents the formation of various defects, such as shallow electron trap sites in the interface. External rf power was applied from 0 to 50W during RF sputtering process to enhance the stability of our oxide transistor without having a large voltage shift. To observe the effects of external rf-plasma source on the properties of our devices, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) are carried out to observe surface roughness and morphology of sputtered thin film. In addition, typical electrical properties, such as I-V characteristics are analyzed.

  • PDF

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma gas and RF Sputtering Power (플라즈마 가스와 RF 파워에 따른 NiO 박막의 우선배향성 및 표면형상 변화)

  • Ryu Hyun-Wook;Choi Gwang-Ryo;Noh Whyo-Sup;Park Yong-Ju;Kwon Yong;Park Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.121-125
    • /
    • 2004
  • Nickel oxide (NiO) thin films were deposited on Si(100) substrates at room temperature by RF magnetron sputtering from a NiO target. The effects of plasma gas and RF power on the crystallographic orientation and surface morphology of the NiO films were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were employed to characterize the deposited film. It was found that the type of plasma gases affected the crystallographic orientation, deposition rate, surface morphology, and crystallinity of NiO films. Highly crystalline NiO films with (100) orientation were obtained when it was deposited under Ar atmosphere. On the other hand, (l11)-oriented NiO films with poor crystallinity were deposited in $O_2$. Also, the increase in RF power resulted in not only higher deposition rate, larger grain size, and rougher surface but also higher crystallinity of NiO films.

Mechanical Properties of High-Hardness TiNX Thin Films Deposited by Pure Nitrogen Plasma Using Magnetron Sputtering Deposition (마그네트론 스퍼터링 증착법을 사용하여 순수한 질소 플라즈마에 의해 성막된 고경도 TiNX 박막의 역학적 특성)

  • Lee, Chang-Hyun;Rhee, Byung-Roh;Bae, Kang;Park, Chang-Hwan;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.514-519
    • /
    • 2017
  • TiN (titanium nitride) films were prepared using the RF magnetron sputtering technique. The films were deposited by pure $N_2$ plasma sputtering. Their mechanical properties, such as nano-indentation hardness, friction coefficient, and surface wettability, have been investigated. X-ray diffraction (XRD) studies revealed that the orientation of $TiN_X$ films changed towards the (111) orientation with decreasing working pressure due to a strong compressive stress during deposition. The strongest TiN (111) orientation was found when the film was deposited at a working pressure of 1 Pa. This film showed the largest hardness (16 GPa) and smallest friction coefficient (0.17) among the studied samples. Moreover, this film was found to be accompanied by a water-repellent surface with water contact angle more than $100^{\circ}$.

A comparative study of electrochemical properties in CrN films prepared by inductively coupled plasma magnetron sputtering (유도결합형 플라즈마 마그네트론 스피터로 제작된 CrN 코팅막의 전기화학적 물성 비교 연구)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • In this paper, we compared the properties of the chromium nitride (CrN) films prepared by inductively coupled plasma magnetron sputtering (ICPMS). As a comparison, CrN film prepared by a direct current magnetron sputtering (dcMS) is also studied. The crystal structure, surface and cross-sectional microstructure and composite properties of the as-deposited CrN films are compared by x-ray diffraction, field emission scanning electron microscopy, nanoindentation tester and corrosion resistance tester, respectively. It is found that the as-deposited CrN films by ICPMS grew preferentially on (200) plane when compared with that by dcMS on (111) plane. As a result, the films deposited by ICPMS have a very compact microstructure with high hardness: the nanoindentation hardness reached 19.8 GPa and 13.5 GPa by dcMS, respectively. Besides, the residual stress of CrN films prepared by ICPMS is also relatively large. After measuring the corrosion resistance, the corrosion current of films prepared by ICPMS was three order of magnitude smaller than that of CrN films deposited by dcMS.

Realization of novel plasma performances based on systematic understanding of plasma behaviour using laser diagnostics

  • Muraoka, K.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.46-52
    • /
    • 1999
  • Laser diagnostics have been extensively used to understand plasma behaiviour under different discharge conditions. Measurements were performance for (i) electric field, (ii) electron temperature and density, and (iii) reaction products due to chemical reactions by electron impacts. The knowledge thus gained has been extensively used to realize novel plasma performances, such as epitaxial thin film depositions using plasma sputtering, performance improvements of discharge-pumped excimer laser, and developments of environmental equipment.

  • PDF

Tendency of PVD coating technology on Metal cutting tools (금속 절삭공구에 대한 PVD 코팅기술의 동향)

  • Kim, Jong-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.11-17
    • /
    • 2001
  • Industrial use of physical vapor deposition(PVD) has been widely expanded during last two decades, and in the mean time plasma assistance in PVD has become an essential tool in preparing compound films with dense microstructure. The principles of electron beam-based plating, balanced and unbalanced magnetron sputtering and cathodic arc deposition. consisting three basic configuration of plasma assisted PVD(PAPVD)process, were reviewed. Recent technical development in PVD coating process were discussed. This paper tries to show tendency for developing new coating film on cutting tools.

  • PDF