• 제목/요약/키워드: Plasma spraying process

검색결과 50건 처리시간 0.018초

플라즈마용사공정에서의 최적 조건 결정에 관한 연구 (Determination of Optimum Condition in Plasma Spraying Process)

  • 최경수;박동화
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.155-162
    • /
    • 1996
  • A Taguchi methodology study of the plasma spraying thermal barrier coating (TBC) layer is presented. The experiment parameters were designed by a L8-style orthogonal arrays approach. A Taguchi analysis was conduc-ted through the results of the coating properties which were affected by plasma spraying parameters. Zirconia (partially stbilized with ytrria: PSZ) was sprayed on TiAl intermetallic compound substrates, The coating layer was characterized by thickness microstructure and porosity using SEM and Image analyzer. The coating quali-ties are discussed with respect to thermal barrier effect thermal cycling test6 and adhesion strength test. An optimum condition of plasma spraying process which are derived from the Taguchi analysis could be found for high quality TBC.

  • PDF

플라즈마에 의한 고밀도침적물 제조시 변수들의 영향 (Effect of Parameters for Dense Bleposit by Plasma)

  • 정인하
    • 한국분말재료학회지
    • /
    • 제5권2호
    • /
    • pp.111-121
    • /
    • 1998
  • Thick and dense deposit of higher than 97% of theoretical density was formed by induction plasma spraying. To investigate the effects of powder morphology on the density of deposit, two different kinds of Yttria-Stabilized-Zirconia powder, METCO202NS (atomized & agglomerated) and AMDRY146 (fused & crushed), were used and compared. After plasma treatment, porous METCO202NS powder was all the more densely deposited and its density was increased. In addition to the effect of powder morphology, the process parameters such as, sheath gas composition, probe position, particle size and spraying distance, and so on, were evaluated. The result of experiment with AMDRY146 powder, particle size and spraying distance affected highly on the density of the deposit. The optimum process condition for the deposition of -75 ${\mu}m$ of 20%-Yttria-Stabilized-Zirconia powder was 120/201/min of Ar/$H_2$ gas rate, 80 kW of plasma plate power, 8 cm of probe position and 150 Torr of spraying chamber pressure, at which its density showed 97.91% of theoretical density and its deposition rate was 20 mm/min. All the results were assessed by statistical approach what is called ANOVA.

  • PDF

스프레이 코팅 기술 (Spray Coating Technology)

  • 이창희
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

THE EFFECT OF SPRAYING PARAMETEES ON THE PROPERTIES OF HYDROXYAPATITE COATUNG

  • Park, K.S.;Huh, W.T.;Son, Y.H.;Kim, C.K.;Kim, S.Y.;Kim, S.G.;Kim, S.W.
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.695-702
    • /
    • 1996
  • Plasma spraying process was employed to produce HA coating on Ti6A14V alloy for the development of a dental implant. The goal of this research was to find optimum spraying conditions for HA coating on Ti6Al4V. This study was thus designed carefully to evaluate how spraying parameters affect various physical properties of a HA coating layer, such as phase composition and bond strength. In plasma spraying, spraying parameters such as hydrogen flow rates and spraying distances were varied systematically to change the degree of the melting of starting HA powder in plasma jet. It was revealed that the deposition efficiency increased with increasing a hydrogen flow rate, and the bond strength between the HA-coated layer and Ti-alloy substrate increased with hydrogen flow rate, but decreased with spraying distance. Therefore, the hydrogen flow rate and the spraying distance should be carefully controlled to obtain the reasonable bond strength simultaneously.

  • PDF

플라즈마 용사법에 의한 Hydroxyapatite 코팅의 용사조건에 관한 연구 (Study on the Spraying Parameters of a Plasma-sprayed Hydroxyapatite Coating)

  • 여인웅;안효석
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.444-450
    • /
    • 1999
  • Hydroxyapatite(HA) was spray-coated to alloy substrate(Ti-6Al-4V) using plasma-spray process for bioceramic application The coating morphology composition and crystallinity were influenced by following process parameters ; stand-off distance spray power level and auxiliary gas pressure. These parameters have been systematically varied in the present study to evaluate their relative influence on the coating qual-ity and to seek an optimum spraying condition. Amorphicity and decomposition of HA increased with stand-off distance and the imperfect coating layer was obtained at the short stant-off distance (55mm). The cry-stallinity of HA coating decreased with spray power level and auxiliary gas pressure but the bond strength between the HA coated layer and Ti alloy substrate increased with the spray power level.

  • PDF

알루미나 첨가가 플라즈마 용사된 세리아계 전해질체 코팅츠의 미세구조 및 기계적 특성에 미치는 영향 (The Effect of Alumina Addition on Microstructure and Mechanical Properties of Plasma-Sparayed Ceria Based Electrolyte Coatings)

  • 김장엽;유석원;임대순
    • 한국세라믹학회지
    • /
    • 제35권6호
    • /
    • pp.610-618
    • /
    • 1998
  • Alumina were added to ceria based ceramic powders upto 9.7 vol% and composite powders were sprayed by plasma spraying process in order to improve the mechanical properties such as hardness fracture tough-ness and thermal shock resistance. The ceria based coating sprayed without alumina has the typical colum-nar and lamellar structure. Alumina addition has lowered the amount of columnar and lamellar sturcture Added alumina was segreagated in the grain boundary and grain of ceria based crystal accompanied with pore. The maximum value of density and the minimum value of porosity were observed at the sprayed coating with 4.8 vol% alumina. The hardness fracture toughness and thermal shock resistance were increased with alumina addition. The improvement of mechanical properties of plasma sparyed ceria based coatings result-ed from the disapperance of the columnar and lamellar sturcture by addition of alumina.

  • PDF

Plasma 용사된 MgO 안정화 지르코니아 단열피복의 기공도와 경도에 미치는 용사조건의 영향 (Effects of Spraying Conditions on the Porosity and Hardness of Plasma Sprayed MgO Stabilized Zirconic Thermal Barrier Coatings)

  • 박영규;최국선;이동희
    • 한국재료학회지
    • /
    • 제2권2호
    • /
    • pp.85-94
    • /
    • 1992
  • Plasma 용사된 단열피복에 내재하는 기공의 크기, 형상 및 분포는 피복층 자체의 물성에 지대한 영향을 미치므로 이를 용사변수에 따라 조사하였다. MgO 안정화 지르코니아 피복시 도입되는 기공은 미세기공 외에 각각 생성기구가 다른 조대한 기공 즉 구형과 불규칙한 기공, 그리고 crack으로 구성되었다. 용사거리에 따라 기공의 생성과정과 특성이 변하였으며 Plasma 전류 및 가스 유량의 증가에 의해서 기공도는 감소하는 경향을 보였다. Plasma 가스가 $N_2$인 경우가 Ar보다 더 높은기공도를 보였고 전체적으로 단열피복의 기공도는 10~18%였다. Scratch test로 측정된 단열피복층의 상대적인 경도는 기공도와 높은 상관관계를 보였다.

  • PDF

대기 플라즈마 용사공정을 이용한 Cu계 벌크 비정질 금속 코팅의 미세조직 분석과 나노 압입시험을 이용한 상 분석 (Microstructure Evolution of Cu-based BMG Coating during APS Process and Phase Analysis by Nano-indentation Test)

  • 김정환;강기철;윤상훈;나현택;이창희
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.43-48
    • /
    • 2009
  • In this study, Cu-based bulk metallic glass (BMG) coatings were deposited by atmospheric plasma spraying (APS) process with different process conditions (with- and without hydrogen gas). As adding the hydrogen gas, thermal energy in the plasma flame increased and induced difference in the melting state of the Cu-based BMG particles. The microstructure and mechanical properties of the coatings were analyzed using a scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) and nano-indentation tester in the light of phase analysis. It was elucidated by the nano-indentation tests that un-melted region was a mainly amorphous phase which showed discrete plasticity observed as the flow serrations on the load.displacement (P - h) curves, and the curves of solidified region showed lower flow serrations as amorphous phase mingled with crystalline phase. Oxides produced during the spraying process had the highest hardness value among the phases and were well mixed with other phases resulted from the increase in melting degree.

INDUCTION PLASMA DEPOSITION TECHNOLOGY FOR NUCLEAR FUEL FABRICATION

  • I. H. Jung;K. K. Bae;Lee, J. W.;Kim, T. K.;M. S. Yang
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.216-221
    • /
    • 1998
  • A study on induction plasma deposition with ceramic materials, yttria-stabilized-zirconia ZrO$_2$-Y$_2$O$_3$ (m.p 264O $^{\circ}C$), was conducted with a view developing a new method for nuclear fuel fabrication Before making dense pellets more than 96%TD., the spraying condition was optimized through the process parameters, such as chamber pressure, plasma plate power powder spraying distance, sheath gas composition, probe position, particle size and powders different morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed a 97.11% theoretical density when the sheath gas flow rate was Ar/H$_2$120/20 l/min, probe position 8cm, particle size -75 ${\mu}{\textrm}{m}$ and spraying distance 22cm by AMDRY146 powder. The degree of influence of the main effects on density were powder morphology. particle size, sheath gas composition, plate power and spraying distance, in that order. Among the two parameter interactions, the sheath gas composition and chamber pressure affects density greatly. By using the multi-pellets mold wheel type, the pellet density did not exceed 94%T.D., owing to the spraying angle.

  • PDF