• Title/Summary/Keyword: Plasma sintering

Search Result 500, Processing Time 0.029 seconds

Eutectic Nanocomposites for Thermophotovoltaic Application

  • Han, Young-Hwan;Lee, Jae-Hyung;Kakegawa, Kazuyuki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.249-252
    • /
    • 2010
  • The ground amorphous powder was consolidated into a dense sintered body with a typical ultrafine $Al_2O_3-GdAlO_3$ eutectic structure by spark plasma sintering (SPS). Sintered material with ultrafine and dense eutectic structure was obtained by an appropriate combination of rapid quenching and SPS at lower temperature and more quickly than by conventional sintering. The $Al_2O_3$-based rare earth eutectic ceramics for solar cell emitters are believed to have a higher efficiency and the $Al_2O_3$ based eutectic ceramics with ultrafine grains will be one of the promising materials showing excellent selective emitter characteristics.

Fabrication of CNT-Reinforced HAp Composites by Spark Plasma Sintering

  • Sarkar, Swapan Kumar;Youn, Min-Ho;Oh, Ik-Hyun;Lee, Byong-Taek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1082-1083
    • /
    • 2006
  • Carbon nanotube (CNT) reinforced hydroxyapatite (HAp) composites were fabricated by using the spark plasma sintering process with surfactant modified CNT and HAp nano powder. Without the dependency on sintering temperature, the main crystal phase existed with the HAp phase although a few contents of ${\beta}-TCP$ (Tri calcium phosphate) phase were detected. The maximum fracture toughness, $(1.27\;MPa.m^{1/2})$ was obtained in the sample sintered at $1100^{\circ}C$ and on the fracture surface a typical intergranular fracture mode, as well as the pull-out pmhenomenon of CNT, was observed.

  • PDF

Microstructure and Mechanical Properties of Nanostructured Aluminum Consolidated by SPS

  • Zadra, Mario;Casari, Francesco;Molinari, Alberto
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.360-361
    • /
    • 2006
  • Nanostructured aluminum powders were obtained by means of planetary ball milling with methanol as the Process Control Agent (PCA). The behavior, during milling, was considered measuring the microhardness and grain size at different milling times. Bulk near-full density samples were sintered using the Spark Plasma Sintering technology with different schedules: temperature of $500^{\circ}C$ and $550^{\circ}C$, pressure of 30 MPa and 60 MPa and different modes of applying the pressure were changed in order to understand the behavior during sintering. All the samples retained their nanostructure with an increase of the grain size from about 46 up to 70-90 nm.

  • PDF

Spark-Plasma Sintering of Mechanically-alloyed NiAl Powder and Ball-milled (Ni+Al) Powder Mixture (기계적합금화 NiAl 분말과 볼밀혼합된 (Ni+Al) 분말의 방전플라즈마소결)

  • 장영일;김지순;안인섭;김영도;권영순
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.161-167
    • /
    • 2000
  • Mechanically-alloyed NiAl powder and ball-milled (Ni+Al) powder mixture were sintered by spark-plasma sintering(SPS) process. Mechanical alloying was performed in a horizontal attritor for 20 h with rotation speed of 600 rpm. (Ni+Al) powder mixtures were prepared by ball milling for 1 and 10 h with 120 rpm. Both powders were sintered at $1150^{\circ}C$ for 5 min under $10^{-3}$ torr vacuum with 50 MPa die pressure in a SPS facility. Sintered densities of 97% and 99% were obtained from mechanically-alloyed NiAl powder and (Ni+Al) powder mixture, respectively. The sintered compact of (Ni+Al) powder mixture showed large grain size by a very rapid grain growth, while the grain size of mechanically-alloyed NiAl powder compact after sintering was extremely fine(80 nm). The difference in densification behavior of both powders were discussed.

  • PDF

Mechanical property of porous Ti implants by sintering method (소결방법에 따른 다공성 티타늄 임플란트의 기계적 특성)

  • Kim, Yung-Hoon
    • Journal of Technologic Dentistry
    • /
    • v.34 no.3
    • /
    • pp.221-226
    • /
    • 2012
  • Purpose: This study was performed to compare mechanical properties for sintering methods of porous Ti implants. Methods: The specimens of Ti implant were fabricated by several sintering methods. One of them is spark plasma sintering(SPS). Another is electro discharge singering(EDS) and the other is high vacuum sintering(HVS). Mechanical properties of porous Ti implants were evaluated by universal testing machine(UTM) and their fracture surface was examined under a sanning electron microscope(SEM). Results: The tensile strength was in a range of 71 to 230 MPa, and Young's modulus was in a range of 11 to 21 Gpa. It matched with range of cortical bone. Conclusion: Mechanical properties of porous Ti implants were similar to human bone. It was shown that sintering methods of spherical powders can efficiently produce porous Ti implants with various porosities. Porous metals will be commonly used in orthopedic and dental application despite of initial focus has been on bioceramics.

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

Microstructure and Mechanical Properties of $Ti_3Al-Nb$ Alloys and TiB(Ti-25Al-11Nb) Metal Matrix Composite Fabricated by Spark Plasma Sintering Process (방전플라즈마 소결법으로 제작된 $Ti_3Al-Nb$ 합금 및 TiB/(Ti-25Al-11Nb) 금속기 복합재료의 미세조직과 기계적 성질)

  • 이성열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.124-133
    • /
    • 2003
  • Ti-25Al-xNb (x=0, 3, 7, 11, 13 at. %) alloys and 18 vol. % TiB/(Ti-25Al-11Nb) metal matrix composite were fabricated by spark plasma sintering process at 900-120$0^{\circ}C$. Microstructural characteristics of the sintered bodies were identified by SEM, EDX analysis, X-ray diffraction, and differential scanning calorimeterric method. $Ti_3Al$ alloy was consisted of equiaxed $\alpha_2$ phase. $Ti_3Al-Nb$ alloys and the matix of TiB/(Ti-25Al-11Nb) metal matrix composite had the morphology that O phase was precipitated at the grain boundary of $\alpha_2$phase. Volume fraction of O phase and hardness were depended on the concentration of Nb in $Ti_3Al-Nb$ alloy, Rule of mixing could be applied to hardness and Young's modulus of 18 vol. % TiB/(Ti-25Al-11Nb) metal matrix composite.

Composite and Spark Plasma Sintering of the Atomized Fe Amorphous Powders and Wire-exploded Cu Nanopowder in Liquid (가스분무 Fe계 비정질 분말과 유체 내 전기선 폭발에 의한 나노 Cu 분말의 복합화와 방전플라즈마 소결)

  • Kim, Jin-Chun;Goo, Wang-Heo;Yoo, Joo-Sik
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • Fe based ($Fe_{68.2}C_{5.9}Si_{3.5}B_{6.7}P_{9.6}Cr_{2.1}Mo_{2.0}Al_{2.0}$) amorphous powder were produced by a gas atomization process, and then ductile Cu powder fabricated by the electric explosion of wire(EEW) were mixed in the liquid (methanol) consecutively. The Fe-based amorphous - nanometallic Cu composite powders were compacted by a spark plasma sintering (SPS) processes. The nano-sized Cu powders of ${\sim}\;nm$200 produced by EEW in the methanol were mixed and well coated with the atomized Fe amorphous powders through the simple drying process on the hot plate. The relative density of the compacts obtained by the SPS showed over 98% and its hardness was also found to reach over 1100 Hv.

Spark Plasma Sintering Behavior and Heat Dissipation Characteristics of the Aluminum Matrix Composite Materials with the Contents of Graphite (흑연 함량에 따른 알루미늄 기지 복합재료의 방전플라즈마소결 거동 및 방열 특성)

  • Kwon, Hansang;Park, Jehong;Joo, Sungwook;Hong, Sanghwui;Mun, Jihoon
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.195-201
    • /
    • 2016
  • Composite materials consisting of pure aluminum matrix reinforced with different amounts of graphite particles are successfully fabricated by mechanical ball milling and spark plasma sintering (SPS) processes. The shrinkage rates of the composite powders vary with the amount of graphite particles and the lowest shrinkage value is observed for the composite with the highest amount of graphite particles. The current slopes of time increase with increase in the amount of graphite particles whereas the current slopes of temperature show the opposite trend. The highest thermal conductivity is achieved for the composite with the least amount of graphite particles. Therefore, the thermal properties of the composite materials can be controlled by controlling the amount of the graphite particles during the SPS process.

Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method

  • Minh, Thuyet-Nguyen;Hong, Hai-Nguyen;Kim, Won Joo;Kim, Ho Yoon;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.213-220
    • /
    • 2016
  • In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.