• Title/Summary/Keyword: Plasma drug concentration

Search Result 336, Processing Time 0.022 seconds

Bioavailability of Ranitidine Tablets in Rats (흰쥐에서 라니티딘제제의 생체이용률)

  • 이미숙;구영순
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.636-644
    • /
    • 1995
  • Comparison of bioavailabflity (BA) of three brands of ranitidine (RT) tablets has been studied m rats. The purpose of this study was to characterize the pharniacolunetics of RT tablets in the rat and to coinpare phannacolunetic parameters of three brands of RT tablets. In addition, it was investigated whether plasma RT concentrations m humans can be predicted from pharmacokinetic parameters obtained in rats. RT was administered intravenously in dose of RT.HCI 10mg/kg and orally in dose of RT.HCI 50mg/kg as solution or crushed sample of thablets. Plasma RT concentrations were determned by HPLC. Plasma RT concentrations as a function of time were fitted to two compartment model. Plasma RT concentrations declined with a terminal half life ($t_{{1}/2{\betha}}$) of 40.9 min. The plasma RT concentration-time curve showed two peak plasma concentrations following an oral administration of solution or crushed sample in rats like humans. No significant difference among pharmacokinetic parameters was observed except $T_{max2}$ (p<0.05). The BA for crushed sample A, B and C were found to be 54.6 40.7 and 40.0%, respectively. Equivalence of $C_{max1}$ and $T_{max2}$ were guaranteed in this study. However, it was concluded that three brands of RT tablets are bioequivalent, taking the following characteristics of RT into consideration;(1) rapid onset of the effect is not required, (2) $C_{max1}$ and $T_{max2}$ do not seem to influence the effectiveness of the drug during a long-term treatment by the usual administration of twice a day. Results from this study were combined with plarmacokinetic data for RT in dogs and humans to develop a basis for interspecies scale-up of the disposition characteristics of the drug. there were similarities in the general disposition of the drug. Allometric relationships were sought between pharmacokinetic parameters nd species body weight. Significant interspecies correlations were found for total body clearance($Cl_{t}$) and steady state volume of distribution ($Bd_{ss}$). Thus, plasma RT concentrations in humans can be predicted from pharmacokinetic parameters obtained in rats.

  • PDF

Preparation and In Vivo Evaluation of Huperzine A-Loaded PLGA Microspheres

  • FU XU-DONG;GAO YONG-LIANG;PING QI-LENG;Ren Tang
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1092-1096
    • /
    • 2005
  • Huperzine A-loaded microspheres composed of poly(D,L-lactide-co-glycolide) were prepared by an O/w emulsion solvent evaporation method. The characterization of the microspheres such as drug loading, size, shape and release profile was described. The in vitro release in the initial 7 days was nearly linear with $10\%$ released per day. Thereafter drug release rate became slow gradually and about $90\%$ drug released at day 21. The in vitro release rate determined by dialysis bag method had a good correlation with the in vivo release rate. Huperzine A aqueous solution was intramuscularly injected (i.m.) at 0.4mg/kg and microspheres were intra­muscularly injected at 8.4 mg eq huperzine A/kg in rats. The maxium plasma concentration $(C_{max})$ after i.m. microspheres was only $32\%$ of that after i.m. solution. Drug in plasma could be detectd until day 14 and about $5\%$ of administered dose was residued at the injection site at day 14. The relative bioavailability of huperzine A microspheres over a period of 14 days was $94.7\%$. Inhibition of acyecholinesterase activity (AchE) in rat's cortex, hippocampus and striatum could sustain for about 14 days. In conclusion, huperzine A-loaded microspheres possessed a prolonged and complete drug release with significant inhibition of AchE for 2 weeks in rats.

Drug Interaction between Ketoconazole and Paclitaxel in Rats (케토코나졸과 파크리탁셀과의 약물상호작용)

  • Choi, Jun-Shik;Park, Bok-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.3
    • /
    • pp.223-227
    • /
    • 2003
  • The purpose of this study was to investigate the effect of ketoconazole (20 mg/kg) on the pharmacokinetic parameters and the bioavailability of paclitaxel (40 mg/kg) orally coadministered in rats. The plasma concentration of paclitaxel in combination with ketoconazole was significantly (p<0.05) increased from 8 hr to 24 hr compared to that of control. Area under the plasma concentration-time curve (AUC) of paclitaxel with ketoconazole was significantly (coadministration p<0.05, pretreatment p<0.0l) higher than that of control. Peak concentration $(C_{max})$ of paclitaxel pretreated with ketoconazole were significantly (p<0.05) increased compared to that of control. Time to peak concentation $(T_{max})$ of paclitaxel pretreated with ketoconazole were significantly (p<0.05) shorter than that of control. Half-life at elimination phase $(t_{1/2{\beta}})$ of paclitaxel pretreated with ketoconazole was significantly (p<0.05) prolonged compared to that of control. Based on these results, it might be due to both inhibition of the enzyme cytochrome P450 and p-glycoprotein, which engaged in paclitaxel absorption and metabolism in liver and gastrointestinal mucosa.

Bioequivalence Assessment of DM Tablet to Motilium-$M^{(R)}$ Tablet (모티리움엠정(말레인산 돔페리돈 12.72 mg)에 대한 디엠정의 생물학적동등성 평가)

  • Cho, Seong-Wan;Kim, Young-Il;Lee, Jong-Oh;Bang, Joon-Seok;Jeong, Ji-Hoon
    • Korean Journal of Clinical Pharmacy
    • /
    • v.18 no.2
    • /
    • pp.106-113
    • /
    • 2008
  • The aim of this study was to evaluate the bioequivalence of two domperidone preparations. Bioequivalence assessment was conducted on 34 healthy volunteers who received two tablets (Domperidone Maleate, 12.72 mg/tablet) in the fasting state, in a randomized balanced $2{\times}2$ cross-over study design. This whole study was performed according to the implementation guidelines of the Korea Food Drug Administration. After dosing of two tablets, blood samples were collected serially for a period of 36 hours. Plasma was analyzed for domperidone by using LC/MS/MS assay method. The analysis system was validated in specificity, accuracy, precision, and linearity. $AUC_t$, (the area under the plasma concentration-time curve from the zero-time to 36 hr) was calculated through the trapezoidal rule. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma domperidone concentration-time data of each volunteer. No significant sequence effect was found for the bioavailability parameters indicating that the cross-over design was properly performed. The 90%-Confidence intervals of the $AUC_t$ ratio and the $C_{max}$ were from log 0.8007 to log 1.1240 and log 0.8645- log 1.2483, respectively. These values were within the acceptable bioequivalence intervals between 0.80 and 1.25. Therefore, this study demonstrated that two formulations have bioequivalence with respect to the rate and extent of absorption.

  • PDF

Bioequivalence Assessment of Acephyll® Capsule to Surfolase® Capsule (Acebrophylline HCl 100 mg) by Liquid Chromatography Tandem Mass Spectrometry

  • Nam, Kyung-Don;Seo, Ji-Hyung;Yim, Sung-Vin;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.309-315
    • /
    • 2011
  • A sensitive and specific liquid chromatographic method coupled with tandem mass spectrometry (LC-MS/MS) was developed for the analysis of ambroxol (active moiety of acebrophylline). After acetonitrile precipitation of proteins from plasma samples, ambroxol and the domperidone (internal standard, IS) were eluted on a C18 column. The isocratic mobile phase was consisted of 10 mM ammonium acetate and methanol (10 : 90, v/v), with flow rate at 0.2 mL/min. A tandem mass spectrometer, as detector, was used for quantitative analysis in positive mode by a multiple reaction monitoring mode to monitor the m/z 379.2${\rightarrow}$264.0 and the m/z 426.2${\rightarrow}$175.1 transitions for ambroxol and the IS, respectively. Twenty four healthy Korean male subjects received two capsules (100 mg ${\times}$ 2) of either the test or the reference formulation of acebrophylline HCl in a 2 ${\times}$ 2 crossover study, this was followed by a 1week washout period between either formulation. $AUC_{0-t}$ (the area under the plasma concentration-time curve) was calculated by the linear trapezoidal rule. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. The 90% confidence intervals for the log transformed data were acceptable range of log 0.8 to log 1.25 (e.g., log 0.8964 - log 0.9910 for $AUC_{0-t}$ log 0.8690 - log 1.0750 for $C_{max}$). The major parameters, $AUC_{0-t}$ and $C_{max}$ met the criteria of Korea Food and Drug Administration for bioequivalence indicating that Acephyll$^{(R)}$ capsule (test) is bioequivalent to Surfolase$^{(R)}$ capsule (reference).

Hepatic Drug Clearance of Animal in Disease States I -Hepato-biliary Transport of Bromphenol Blue in Acute $CCl_4$ Intoxicated Rabbits- (병태동물(病態動物)에서의 약물(藥物)의 Hepatic Clearance에 관한 연구(硏究) I -병태가토(病態家兎)에서의 Bromphenol Blue의 간담수송(肝膽輸送)-)

  • Woo, Chong-Hak;Kim, Shin-Keun;Lee, Min-Hwa;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 1980
  • Bromphenol blue (BPB) was studied with rabbits in normal and disease states to understand the basic principles of hepato-biliary transport process, and the effect of disease states on the drug disposition. The time course of plasma concentration and of biliary excretion was studied in normal and $CCl_4$ intoxicated rabbits. A conspicuous retention of BPB clearance from the plasma was observed, and the slope of the first-phase of plasma curve was decreased in the intoxicated rabbits. The shape of biliary excretion was same in normal and intoxicated states, but the amount of BPB excreted into bile in the intoxicated states was much smaller than in normal states. A relationship was found which enables one to predict the pattern of uptake of BPB by the liver, and the pattern of excretion into the bile in normal states, but was not in $CCl_4$ intoxicated states. It may be that the application of this experiments would extend the effect of disease states on the drug disposition.

  • PDF

Evaluation of a Sample-Pooling Technique in Estimating Bioavailability of a Compound for High-Throughput Lead Optimazation (혈장 시료 풀링을 통한 신약 후보물질의 흡수율 고효율 검색기법의 평가)

  • Yi, In-Kyong;Kuh, Hyo-Jeong;Chung, Suk-Jae;Lee, Min-Haw;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.191-199
    • /
    • 2000
  • Genomics is providing targets faster than we can validate them and combinatorial chemistry is providing new chemical entities faster than we can screen them. Historically, the drug discovery cascade has been established as a sequential process initiated with a potency screening against a selected biological target. In this sequential process, pharmacokinetics was often regarded as a low-throughput activity. Typically, limited pharmacokinetics studies would be conducted prior to acceptance of a compound for safety evaluation and, as a result, compounds often failed to reach a clinical testing due to unfavorable pharmacokinetic characteristics. A new paradigm in drug discovery has emerged in which the entire sample collection is rapidly screened using robotized high-throughput assays at the outset of the program. Higher-throughput pharmacokinetics (HTPK) is being achieved through introduction of new techniques, including automation for sample preparation and new experimental approaches. A number of in vitro and in vivo methods are being developed for the HTPK. In vitro studies, in which many cell lines are used to screen absorption and metabolism, are generally faster than in vivo screening, and, in this sense, in vitro screening is often considered as a real HTPK. Despite the elegance of the in vitro models, however, in vivo screenings are always essential for the final confirmation. Among these in vivo methods, cassette dosing technique, is believed the methods that is applicable in the screening of pharmacokinetics of many compounds at a time. The widespread use of liquid chromatography (LC) interfaced to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) allowed the feasibility of the cassette dosing technique. Another approach to increase the throughput of in vivo screening of pharmacokinetics is to reduce the number of sample analysis. Two common approaches are used for this purpose. First, samples from identical study designs but that contain different drug candidate can be pooled to produce single set of samples, thus, reducing sample to be analyzed. Second, for a single test compound, serial plasma samples can be pooled to produce a single composite sample for analysis. In this review, we validated the issue whether the second method can be applied to practical screening of in vivo pharmacokinetics using data from seven of our previous bioequivalence studies. For a given drug, equally spaced serial plasma samples were pooled to achieve a 'Pooled Concentration' for the drug. An area under the plasma drug concentration-time curve (AUC) was then calculated theoretically using the pooled concentration and the predicted AUC value was statistically compared with the traditionally calculated AUC value. The comparison revealed that the sample pooling method generated reasonably accurate AUC values when compared with those obtained by the traditional approach. It is especially noteworthy that the accuracy was obtained by the analysis of only one sample instead of analyses of a number of samples that necessitates a significant man-power and time. Thus, we propose the sample pooling method as an alternative to in vivo pharmacokinetic approach in the selection potential lead(s) from combinatorial libraries.

  • PDF

Effect of Solubilizing and Microemulsifying Excipients in Polyethylene Glycol 6000 Solid Dispersion on Enhanced Dissolution and Bioavailability of Ketoconazole

  • Heo, Min-Young;Piao, Zong-Zhu;Kim, Tae-Wan;Cao, Qing-Ri;Kim, Ae-Ra;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.604-611
    • /
    • 2005
  • Polyethylene glycol (PEG) 6000-based solid dispersions (SDs), by incorporating various pharmaceutical excipients or microemulsion systems, were prepared using a fusion method, t o compare the dissolution rates and bioavailabilities in rats. The amorphous structure of the drug in SDs was also characterized by powder X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The ketoconazole (KT), as an antifungal agent, was selected as a model drug. The dissolution rate of KT increased when solubilizing excipients were incorporated into the PEG-based SDs. When hydrophilic and lipophilic excipients were combined and incorporated into PEG-based SDs, a remarkable enhancement of the dissolution rate was observed. The PEG-based SDs, incorporating a self microemulsifying drug delivery system (SMEDDS) or microemulsion (ME), were also useful at improving the dissolution rate by forming a microemulsion or dispersible particles within the aqueous medium. However, due to the limited solubilization capacity, these PEG-based SDs showed dissolution rates, below 50% in this study, under sink conditions. The PEG-based SD, with no pharmaceutical excipients incorporated, increased the maximum plasma concentration (C$_{max}$) and area under the plasma concentration curve (AUC$_{0-6h}$) two-fold compared to the drug only. The bioavailability was more pronounced in the cases of solubilizing and microemulsifying PEG-based SDs. The thermograms of the PEG-based SDs showed the characteristic peak of the carrier matrix around 60$^{\circ}C$, without a drug peak, indicating that the drug had changed into an amorphous structure. The diffraction pattern of the pure drug showed the drug to be highly crystalline in nature, as indicated by numerous distinctive peaks. The lack of the numerous distinctive peaks of the drug in the PEG-based SDs demonstrated that a high concentration of the drug molecules was dissolved in the solid-state carrier matrix of the amorphous structure. The utilization of oils, fatty acid and surfactant, or their mixtures, in PEG-based SD could be a useful tool to enhance the dissolution and bioavailability of poorly water-soluble drugs by forming solubilizing and microemulsifying systems when exposed to gastrointestinal fluid.

Effects of Kaempferol, an Antioxidant, on the Bioavailability and Pharmacokinetics of Nimodipine in Rats

  • Park, Ji-Won;Choi, Jin-Seok;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.301-307
    • /
    • 2011
  • The aim of this study was to investigate the effects of kaempferol on the pharmacokinetics of nimodipine in rats. Nimodipine and kaempferol interact with cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), and the increase in the use of health supplements may result in kaempferol being taken concomitantly with nimodipine as a combination therapy to treat orprevent cardiovascular disease. The effect of kaempferol on P-gp and CYP3A4 activity was evaluated and Pharmacokinetic parameters of nimodipine were determined in rats after an oral (12 mg/kg) and intravenous (3 mg/kg) administration of nimodipine to rats in the presence and absence of kaempferol (0.5, 2.5, and 10 mg/kg). Kaempferol inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $17.1{\mu}M$. In addition, kaempferol significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, the area under the plasma concentration-time curve ($AUC_{0-\infty}$) and the peak plasma concentration ($C_{max}$) of nimodipine significantly increased, respectively. Consequently, the absolute bioavailability of nimodipine in the presence of kaempferol (2.5 and 10 mg/kg) was 29.1-33.3%, which was significantly enhanced compared to the oral control group (22.3%). Moreover, the relative bioavailability of nimodipine was 1.30- to 1.49-fold greater than that of the control group. The pharmacokinetics of intravenous nimodipine was not affected by kaempferol in contrast to those of oral nimodipine. Kaempferol significantly enhanced the oral bioavailability of nimodipine, which might be mainly due to inhibition of the CYP3A4-mediated metabolism of nimodipine in the small intestine and /or in the liver and to inhibition of the P-gp efflux transporter in the small intestine by kaempferol. The increase in oral bioavailability of nimodipine in the presence of kaempferol should be taken into consideration of potential drug interactions between nimodipine and kaempferol.

Bioequivalence of Cefaclor Capsules Following Single Dose Administration to Healthy Male Volunteers (세파클러 캅셀제에 대한 생물학적 동등성 평가)

  • Bok, Hae Sook;Kim, Myoung Min;Kwon, Yi Oh;Choi, Kyung Eob
    • Korean Journal of Clinical Pharmacy
    • /
    • v.7 no.1
    • /
    • pp.17-21
    • /
    • 1997
  • Cefaclor is a second generation cephalosporin antibiotic that shows a potent antibacterial activity against both Gram-positive and Gram-negative bacteria, when it is orally administered. Due to its patent expiration, a number of generic drugs have been marketed, but not yet elucidated to ensure therapeutic equivalence. In this study, cefaclor capsules manufactured by Chong Kun Dang were bioequivallently assessed by comparing with $Ceclor^{TM}$ introduced originally by Daewoong Lilly. A total of 16 healthy male volunteers were evaluated in a randomized crossover manner with a 2-week washout period. Concentrations of cefaclor in plasma were measured upto 6 hours following a single oral administration of two capsules (500 mg of cefaclor) by high-performance liquid chromatography with UV detection. Although the plasma concentration at 6 hours was not detected, the computed half-life of cefaclor was approximately 0.5 hours. The area under the concentration-vs-time curve from 0 to 4 hours $(AUC_{0-4h})$ was calculated by the trapezoidal summation method. The differences in mean values of $AUC_{0-4h}$, peak plasma concentration $(C_{max})$, and time to peak concentration $(T_{max})$ between the two products were $4.63\%,\;1.84\%,\;and\3.28\%$, respectively. The least significant differences at $\alpha4= 0.05 for $AUC_{0-4h},\;C_{max},\;and\;T_{max}\;were\;6,53\%,\;4.05\%,\;and\;6.47\%$, respectively. In conclusion, the test drug was bioequivalent with the reference drug.

  • PDF