• Title/Summary/Keyword: Plasma display panels

Search Result 157, Processing Time 0.032 seconds

Bendable ac-PDP using Fence-Structured Electrodes on Polyethylene Terephthalate Substrate

  • Choi, Won-Yeol;Hong, Cho-Rong;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.593-596
    • /
    • 2007
  • A possibility of manufacturing bendable ac-PDP using aluminum electrode with anodic aluminum oxide dielectric material system on PET film substrate was explored. For this structure, PET film with fence-structured aluminum electrodes was used for front plate and PET film with barrier ribs of UV curable resin for the rear plate. The results demonstrate that it is feasible to manufacture the bendable ac-PDPs using those material system and are expected to expand the applications of plasma display panels.

  • PDF

Analysis of materials for protective layers in AC PDPs.

  • Matulevich, Y. T.;Lee, Min-Suk;Kim, Suk-Ki;Choi, Jong-Seo;Zang, Dong-Sik;Kirm, Marco
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.213-215
    • /
    • 2007
  • To clarify processes responsible for improved characteristics of protective layers (e.g. SrCaO) the ion-induced electron emission and photoemission from these layers were analyzed. Additionally, a study of ternary Mg-, Ca-, Ba-based compounds as candidate materials for a protective layer of Plasma Display Panels has been performed as well.

  • PDF

An analysis of new driving wave form Using Sine Wave on AC-PDP (Sine파를 이용한 새로운 AC-PDP 구동 파형 해석)

  • Choi, Won-Young;Ok, Jung-Woo;Choi, Joon-Young;Yoo, Su-Bok;Lee, Hae-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1521-1522
    • /
    • 2006
  • Cathode ray tube(CRT)를 대체 할 수 있는 차세대 display 중 plasma display panels(PDPs)가 각광받고 있지만, 여전히 효율 개선은 중요한 과제이다. 본 연구에서는 기존의 PDP driving 중 발광영역에 sine wave를 접목시켜 수치해석하였다. 수치 해석은 2차원 fluid-code simulator를 사용하였고, 여러가지 sine wave형태와 세폭 pulse를 조합하여, 30%이상의 효율 향상을 얻을 수 있었다.

  • PDF

The study of the characteristics of micro-gap discharge (미소 전극 간격을 갖는 방전장치에서의 방전특성 연구)

  • Seo, Jeong-Hyun;Shin, Buhm-Jae;Jeong, Heui-Seob;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.267-269
    • /
    • 1994
  • Various types of plasma display panels(PDPs) have been developed to realize the flat panel display device. But, many of its characteristics must be improved before it can be commercialized. In order to investigate tile characteristics of micro discharge in a PDP ceil, we have constructed a micro-gap discharge system whose electrode gap can be adjustable between $100-1000{\mu}m$ within $0.1{\mu}m$ accuracy. We measured the minimum sustain voltage, current, delay time of discharge while changing parameters(electrode gap distance, electrode surface area, pressure) which influence discharge characteristics.

  • PDF

The study on the electrical and optical characteristics of a new structure for color ac plasma displays(II) (새로운 전극구조를 가진 AC-PDP의 전기 광학적 특성에 관한 연구(II))

  • Lee, Woo-Geun;Lee, Jae-Young;Kim, Young-Dae;Lee, Ki-Beum;Cho, Jung-Soo;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1093-1095
    • /
    • 1999
  • A new type ac plasma display panels(PDPs) cells are designed and tested electrically and optically. One cells have the structure of sin discharge path shape and small electrode area. The other cells have the non-symmetric structure with a same electrode area. They show a higher luminous efficiency and a lower power consumption about 25% improvement than the conventional standard ac PDP cells.

  • PDF

A Study on the MgO Protective Layer Deposited by Oxygen-Neutral-Beam-Assisted Deposition in AC PDP (산소 중성빔으로 보조증착된 MgO 보호막을 갖는 AC PDP의 특성에 관한 연구)

  • Li, Zhao-Hui;Kwon, Sang-Jik
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.96-101
    • /
    • 2008
  • The magnesium oxide (MgO) protective layer plays an important role in plasma display panels (PDPs). Our previous work demonstrated that the properties of MgO thin film could be improved, which were deposited by Ion-Beam-Assisted Deposition (IBAD). However arc discharge always occurs during the IBAD process. To avoid this problem, Oxygen-Neutral-Beam-Assisted Deposition (NBAD) is used to deposit MgO thin films in this paper. The energy of the oxygen neutral beam was used as the parameter to control the deposition. The experimental results showed that the oxygen neutral beam energy was effective in determining in structural and discharge characteristics. The lowest firing inception voltage, the highest brightness and the highest luminous efficiency were obtained when the MgO thin film was deposited with an oxygen neutral beam energy of 300eV. The surface morphology of MgO thin film was also analyzed using AFM (Atomic Force Microscopy) and SEM (Scanning Electron Microscopy).

Electron Temperature, Plasma Density and Luminous Efficiency in accordance with Discharge Time in coplanar AC PDPs

  • Jeong, S.H.;Moon, M.W.;Oh, P.Y.;Jeong, J.M.;Ko, B.D.;Park, W.B.;Lee, J.H.;Lim, J.E.;Lee, H.J.;Han, Y.G.;Son, C.G.;Lee, S.B.;Yoo, N.L.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1203-1206
    • /
    • 2005
  • Electron temperature and plasma density in coplanar alternating-current plasma display panels (AC-PDP's) have been experimentally investigated in accordance with discharge time by a micro-probe in this experiment. The resolution of a step mortor to move in micro-Langmuir probe is 10um.[1-3] The used gas in this experiment is He-Ne-Xe (4%) mixure gas. And sustain voltage is 320V which is above of firing voltage for degradation. The electron temperature and plasma density can be obtained from current-voltage (I-V) characteristics of micro Langmuir probe, in which negative to positive bias voltage was applied to the probe. And Efficiency is calculated by formula related discharge power and light emission. Those experiments operated as various discharge time ($0{\sim}72$ Hours). As a result of this experiment, Electron Temperature was increased from 2eV to 5eV after discharge running time of 20 hours and saturates beyond 20 hours. The plasma density is inversely proportional to the square root of electron temperature. So the plasma density was decreased from $1.8{\times}10^{12}cm^{-3}$ to $8{\times}10^{11}cm^{-3}$ at above discharge running time. And the Efficiency was reduced to 70% at 60hours of discharge running time.

  • PDF

Development of photo-sensitive aluminum electrode materials in PDPs

  • Kim, Chul-Hong;Chae, So-Ra;Hwang, Yun-Tae;Kim, Min-Jae;Heo, Eun-Gi;Lee, Byung-Hak;Park, Yung-Jun;Chung, Chong-In;Kim, Dong-Jun;Cho, Jae-Hwi;Kim, Hyun-Don;Okamoto, Kuninori;Kweon, Tae-Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.269-271
    • /
    • 2009
  • We investigated on the sintering behaviors and electrical properties of photo-sensitive aluminum (Al) electrode materials in plasma display panels. General characteristics of Al electrodes was totally different to that of conventional Ag materials; resistivity was decreased with the increasing of metal particle sizes and the amount of frit content and there is almost no width difference between developed and fired electrodes layers. Microstructures of fired electrodes revealed that Al electrodes had different mechanism on necking between metal particles and making electrical conducting path. Chemical durability (especially, antialkalinity) and adhesion of Al electrodes must be carefully controlled. Nevertheless there are difficulties of processing Al electrodes, we developed and optimized photo-sensitive Al materials as address electrodes without any changes of existing patterning equipment and sintering conditions.

  • PDF

Preparation of MgO Protective layer by reactive magnetron Sputtering (반응성 스퍼트링에 의한 MgO 유전체 보호층 형성에 관한 연구)

  • Ha, H. J.;Lee, W. G.;Ryu, J. H.;Song, Y.;Cho, J. S.;Park, C. H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.59-62
    • /
    • 1996
  • Plasma displays (PDP) as a large area wall-hanging display device are rabidly developed with flat CRT, TPT LCD and etc. Especially, AC Plasma Display Panels(AC PDPs) have the inherent memory function which is effective for large area displays. The memory function in AC PDPs is caused by the accumulation of the electrical charge on the protecting layer formed on the dielectric layer. This MgO protective layer prevents the dielectric layer from sputtering by ion in discharge plasma and also has the additional important roll in lowering the firing voltage due to the large secondary electron emission coefficient). Until now, the MgO Protective layer is mainly formed by E-Beam evaporation. With increasing the panel size, this process is difficult to attain cost reduction, and are not suitable for large quantity of production. To the contrary, the methode of shuttering are easy to apply on mass production and to enlarge the size of the panel and shows the superior adhesion and uniformity of thin film. In this study, we have prepared MgO protective layer on AC PDP Cell by reactive magnetron sputtering and studied the effect of MgO layer on the surface discharge characteristics of ac PDP.

  • PDF

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF