• Title/Summary/Keyword: Plasma density

Search Result 1,731, Processing Time 0.023 seconds

Identification of LED Lights for the Attraction of Bemisia Tabaci and Effect of Host Plant in the Initial Periods (담배가루이 유인용 LED 선발과 기주식물이 초기 유인력에 미치는 영향)

  • Kwon, D.H.;Kwon, M.J.;Yang, D.Y.;Ahn, Y.K.;Hong, K.H.;Park, M.R.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.2
    • /
    • pp.123-133
    • /
    • 2020
  • Four LEDs (blue, green, red, and white light) were tested to identify the most attractive wave length to utilize as the forecasting tools for the B. tabaci in glass houses. Attractiveness was evaluated by the total number of the B. tabaci attached to a yellow sticky trap. In the condition of no host plant supplement, the attraction efficacy was ordered from high to low as blue light (107.3±2.5), white light (83.0±12.1), red light (58±21.8), and green light (39.7±8.1). In the supplement of the host plant, the attraction was observed in the order of blue light (52±17.4), red light (38.7±5.8), green light (12.7±1.5), and white light (11.7±5.0). In both experimental conditions, blue light showed the highest attraction. In terms of the host plant effect to LED attraction, it varied following as white light (85.9%), green light (68.1%), blue light (51.6%), and red light (33.3%). This result suggests that red light is the least affected by the host plant. In the evaluation of the relative control efficacy, it was determined following as red light (66.7%), blue light (48.5%), green light (31.9%) and white light (14.1%) (F3,8 = 14.7, P = 0.001). Taken together, blue light had a very high initial attraction, and red light was revealed low attraction effect by the supplement of the host plant. In field demonstration experiments, a high attractive efficacy was not observed due to low-temperature conditions, but similar higher attractive efficacy was observed in blue and red lights compared to the control. The commercialization of LEDs using red and blue in the future is expected to provide important information regarding B. tabaci population density forecast in glass house.