• Title/Summary/Keyword: Plasma arc welding

Search Result 90, Processing Time 0.026 seconds

ANALYSIS OF TRANSIENT TEMPERATURE DISTRIBUTION IN ROTATING ARC GMA ELDING BY CONSIDERING DROPLET DEFLECTION

  • Kim, Cheolhee;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.763-768
    • /
    • 2002
  • This paper presents a mathematical model predicting the temperature distribution in rotating GMA welding. The bead width increases with rotation frequency at the same rotation diameter because the molten droplets are deflected by centrifugal force. The numerical solution is obtained by solving the transient three-dimensional heat conduction equation considering the heat input from the welding arc, cathode heating and molten droplets. Generally in GMA welding the heat input may be assumed as a normally distributed source, but the droplet deflection causes some changes in the heat input distribution. To estimate the heat flux distribution due to the molten droplet, the contact point where the droplet is transferred on the weld pool surface is calculated from the flight trajectory of the droplets under the arc plasma velocity field obtained from the arc plasma analysis. The numerical analysis shows a tendency of broadened bead width and shallow penetration depth with the increase of rotating frequency. The simulation results are in good agreement with those obtained by the experiments under various welding conditions.

  • PDF

Formation of Thicker hard Alloy Layer on Aluminum Alloy by PTA Overlaying with Metal Powders (플라스마 아크 紛體肉盛法에 의한 Al 合金의 硬化厚膜 合金化層의 形成)

  • ;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.74-85
    • /
    • 1993
  • Effect of Si metal powders addition with the plasma transferred arc(PTA) overlaying process on characteristics of the alloyed layer in aluminum alloy(A5083) has been investigated. The overlaying conditions were 175-250A in plasma arc current, 500mm/min in travel speed, the 5-20g/min in powder feeding rate. Main results obtained are summarized as follows. 1)Sufficient size of molten pool on surface of base metal was required for forming an alloyed layer; in a fixed travel, the formation of alloyed layer with clear and beautiful surface depend upon the plasma arc current and powder feeding rate; the greater plasma arc current and the smaller powder feeding rate were, the better bead was formed. Optimum alloyed conditions by which an excellent alloyed bead obtained was 225A in plasma arc current. PTA process made it possible to form an alloyed layer with up to 67wt% Si. 2)Microstructure in the alloyed layer was in accord with prediction from the Al-Si phase diagram 3)The hardness of the alloyed layer increased in proportion to Si content. 4)As volume fraction of primary Si increased, the specific wearness of the alloyed layer was significantly improved. However, no further improvement was found when the volume fraction was greater than about 30%. 5)Utilizing the PTA process, a crack free alloyed layer with maximum hardness of about Hv 310 could be obtained.

  • PDF

A study on development of plasma-arc cutting system with computer-numerical control (컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF

LASER ARC HYBRID WELDING

  • Dilthey, Ulrich;Keller, Hanno
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.162-168
    • /
    • 2002
  • Hybrid Welding means the coupling of the energy of two different energy sources in a common process zone. This paper describes prospects in laser-arc-hybrid-welding. Different kinds of lasers ($CO_2$ laser and Nd:YAG laser) and arc processes (TIG, Plasma and GMA) are considered.

  • PDF

Automatic Seam Tracking for Plasma Arc Welding of a Corrugation Panel (파형부재의 플라즈마 아크용접을 위한 자동 용접선 추적)

  • Yang, Joo-Woong;Park, Young-Jun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1506-1511
    • /
    • 2003
  • This paper describes an automatic weld seam tracking method of plasma arc welding system designed for the corrugation panel that consists of a linear section and a curved section with various curvatures. Due to the complexity of the panel shape, it is difficult to find a seam and operate a torch manually in the welding process. So, the laser vision sensor for seam tracking is designed for sensing the seam position and controlling a torch automatically. To achieve precise seam tracking, the design of sensor head, image simulation, and calibration are carried out. Through a series of experiment result, compensation algorithm is added and real time error compensation is achieved. The experiment result shows that this vision sensor works effectively. It will provide more precise welding performance and convenience to the operator.

  • PDF

Development of Durability Enhancement Technology for Arc Weldings in Advanced High Strength Steel (AHSS) Chassis Parts (고장력강판 적용 샤시부품의 용접부 내구수명 향상기술 개발)

  • Lee, Kwang Bok;Oh, Seung Taik
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.50-56
    • /
    • 2015
  • In general, discontinuity of metallurgical and structural points of weld zone could decline the fatigue strength. For the lightweight trend, the AHSS application in automotive chassis is in-progress. However, there are few research reports on AHSS welds fatigue strength in especially automotive chassis parts. Therefore, in this study, we evaluated the effects of the factors affecting the AHSS welding fatigue strength. As the result, the stress concentration of weld bead is the most important factor for welding fatigue strength. For the enhancement of welding fatigue strength, we focused on reducing the stress concentration of the welding beads. So, we applied and proved the plasma welding process and GTAW (Gas Tungsten Arc Welding) dressing method. It was verified by uniaxial fatigue specimen, fatigue performance increased from 40 to 60% by applying TIG dressing method compared to the conventional GMAW (Gas Metal Arc Welding). These results could be recommended the enhancement of fatigue performance of AHSS.

Heat and mass flow in plasma arc keyhole-welding of thin plate (플라즈마 키홀 박판 용접에서의 열 및 물질 유동)

  • 김원훈;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.813-824
    • /
    • 1988
  • Use of a plasma arc as the source of energy for penetration welding of thin plates gives rise to a cylindrical hole surrounded by the molten metal. Material moves from the front to the rear of the hole by flowing around the hole as the workpiece is translated relatively to the arc. Based on the finite difference method, three different computer models have been proposed for the steady state, two dimensional heat and mass flow during the plasma arc welding. In the formulation energy equation was derived by the energy blance method through the cell control volume, and all the governing equations derived for the fixed coordinates was translated for the moving coordinate system. The driving force for fluid flow being considered was only electromagnetic force. The calculated and measured molten poon and HAZ width were compared and better agreement was obtained for the models considering the keyhole effect.

Characteristics of High Temperature Fatigue for welding material by Plasma Transferred Arc Weld (플라즈마 분말 용접재의 고온피로특성)

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kweon, Hyun-Kyu;Kim, Gi-Man;Kim, Jam-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.92-97
    • /
    • 2007
  • The overlay welding the automobile where the durability is demanded, it is used in the vessel engine valve, plant valve and pump parts. Cause of damage public opinion one what is thought is the fatigue load due to the opening and shutting operation right time repetition of the engine valve. The damage cause of the engine valve or explanation of destruction mechanism is very difficult. The research which it sees to make clear a overlay welding of Co-alloy by Plasma Transferred Arc Weld Surfacing Process reconsideration fatigue crack initiation and fatigue crack growth mechanism at high temperature.

  • PDF

The Effects of Welding Parameters on Quality in Lap Joint Fillet Welds of Thin Plate by Plasma Welding (Plasma 용접에 의한 박판 겹치기 이음 필릿 용접부의 품질에 미치는 용접 변수의 영향)

  • Park, Kun-Gi;Yang, Jong-Soo;Cho, Sang-Myung;Yoon, Hun-Sung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.122-127
    • /
    • 2006
  • In case of lap joint fillet welds of thin plate, the example which is applicable to Plasma Welding increases substituting for the exiting TIG Welding but the quality of Plasma arc welding has a special feature influenced sensitively by the condition of welding caused by controlling the various parts of welding torch. This research is purposed to improve lap joint fillet welds of thin plate in high quality and attain the high productivity and it is examined that how the change of electrode tip angle and Setback has an effect on the quality of welding and it is investigated how the change of Setback and Standoff has an effect on Melting efficiency using Response Surface Analysis.

  • PDF