• Title/Summary/Keyword: Plasma Gas Control Apparatus

Search Result 4, Processing Time 0.018 seconds

A Study on the Machining Characteristics of CVD-SiC (CVD-SiC 소재의 가공 특성에 관한 연구)

  • Park, Hwi-Keun;Lee, Won-Seok;Kang, Dong-Won;Park, In-Seung;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2017
  • A plasma gas control apparatus for semiconductor plasma etching processes securely holds a cathode for forming a plasma, confines the plasma during the plasma etching process, and discharges gas after etching. It is a key part of the etching process. With the advancement of semiconductor technology, there is increasing interest in parts for semiconductor manufacturing that directly affect wafers. Accordingly, in order to replace the plasma gas control device with a CVD-SiC material superior in mechanical properties to existing SiCs (Sintered-SiC, RB-SiC), a study on the grinding characteristics of CVD-SiC was carried out. It is confirmed that the optimal grinding condition was obtained when the result table feed rate was 2 m/min and the infeed depth was $5{\mu}m$.

A Study on the Optimal Magnet for ECR (ECR 용 최적 마그네트에 관한 연구)

  • Kim, Y.T.;Kim, Y.J.;Kim, K.S.;Lee, Y.J.;Son, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.649-652
    • /
    • 1992
  • ECR(Electron Cyclotron Resonance) occure at ${\omega}_c$=${\omega}$, ${\omega}_c$:electron cycltron frequency, ${\omega}$:electromagnetic wave frequency. ECR system have several merit, 1) power transefer efficiency 2) low neutral gas pressure (below 1 mTorr) 3) high plasma density($10^{12}$ $cm^{-3}$). It is applicated variously in the field of semiconductor and new materials as the manufacturing equipment. Magnetic field in ECR system contruct resonance layer (${\omega}$=2.45GHz, $B_z$=875 Gauss) and control plasma. Plasma is almost generated at resonance layer. If the distance between substrate and resonance layer is short, uniformity of plasma is related with profile of resonance layer. Plasma have the property "Cold in Field", so directonality of magnetic field is one of the control factors of anisotropic etching. In this study, we calculate B field and flux line distribution, optimize geometry and submagnet current and improve of magnetic field directionality (99.9%) near substrate. For the purpose of calculation, vector potential A(r,z) and magnetic field B(r,z), green function and numerical integration is used. Object function for submagnet optimization is magnetic field directionality on the substrate and Powell method is used as optimization skim.

  • PDF

Optical Properties for Plasma Polymerization Thin Films Using Envelope Method By Spectrophotometry (ENVELOPE METHOD를 이용한 플라즈마 중합 유기박막의 광학특성)

  • Yoo, D.C.;Park, G.B.;Lee, D.C.;HwqangBo, C.K.;Jin, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.183-186
    • /
    • 1991
  • In order to prepare the functional organic optic meterials, the capacitive coupled gas flow type plasma polymerization apparatus was designed and manufactured. Styrene and para-Xylene monomer were adopt as organic materisl. Optical constant, refrative index, extinction coefficient of organic thin films by the gas flow type plasma polymerization appratus were determined by envelope method using spectrophotometry. The refractive index of plasma polymerized thin films was decreased in accordance to increase of wave length and discharge time. The extinction coefficient was very small compared with refractive index. From the experimental result of optical constant and film thickness, it was considered that the films which had required optical properties and thickness can be prepared by control of polymerization condition.

  • PDF

ADHESION STRENGTH OF DIAMOND COATED WC-Co TOOLS USING MICROWAVE PLASMA CVD

  • Kiyama, Nobumichi;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.540-544
    • /
    • 1996
  • To apply the CVD diamond film to coated tools, it is necessary to make adhesion strength between diamond film and substrate stronger. So adhesion strength of diamond coated WC-Co tools using Microwave Plasma CVD and cutting test of Al-18mass%Si alloy using diamond cutting tools were studied. Diamond coating was carried out using Microwave Plasma CVD apparatus. Reaction gas was used mixture of methane and hydrogen. Substrate temperature were varied from 673K to 1173K by control of microwave output power and reaction pressure. By observation of SEM, grain size became larger and larger as substrate temperature became higher and higher. Also all deposits were covered with clear diamond crystals. XRD results, the deposits were identified to cubic diamond. An analysis using Raman spectroscopy, the deposit synthesized at lower substrate temperature (673K) showed higher quality than deposit synthesized at higher substrate temperature (1173K). As a result of scratch adhesion strength test, from 873K to 1173K adhesion strength decreased by rising of substrate temperature. The deposit synthesized at 873K showed best adhesion strength. In the cutting test of Al-18mass%Si alloy using diamond coated tools and the surface machinability of Al-Si works turned with diamond coating tools which synthesized at 873K presented uniform roughness. Cutting performance of Al-18mass%Si alloys using diamond coated WC-Co tools related to the adhesion strength.

  • PDF