• Title/Summary/Keyword: Plasma Equipment

Search Result 247, Processing Time 0.031 seconds

Development Status of High Enthalpy Plasma Equipment (전북대 고온플라즈마 설비 구축 및 응용연구 소개)

  • Choi, Chea-Hong;Lee, Mi-Yun;Kim, Min-Ho;Hong, Bong-Guen;Seo, Jun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.694-696
    • /
    • 2011
  • The high enthalpy plasma research center in Chonbuk national university is under construction for four types of plasma equipments. The equipments are 1set of 0.4 MW class enhanced Huels type plasma equipment, 1 set of 2.4 MW class enhanced Huels type plasma quipment, 1 set of 60 kW RF plasma equipment and 1 set of 200 kW RF plasma equipment. 60kW RF plasma system is R&D and pilot scale production equipment of nano powder synthesis and plasma spray coating. 200kW RF plasma system is mass production equipment with high power capacity of nano powder synthesis. 0.4MW plasma system can be applied to the ground test facility for material testing under re-entry conditions for space vehicles.

  • PDF

Site Plan of High-enthalpy Plasma Research Center in Chonbuk National University (전북대학교 고온플라즈마응용연구센터 Site Plan)

  • Kim, Min-Ho;Choi, Seong-Man;Seo, Jun-Ho;Choi, Chea-Hong;Hong, Bong-Guen
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.764-767
    • /
    • 2010
  • The high enthalpy plasma research center in Chonbuk national university is under construction for MW class plasma wind tunnel. Four types of plasma equipment will be installed in the research center. The equipments are 1set of 0.4 MW class enhanced Huels type plasma equipment, 1 set of 2.4 MW class enhanced Huels type plasma equipment, 1 set of 60 kW RF plasma equipment and 1 set of 200 kW RF plasma equipment. And electrical, water and gas utilities to assistant plasma equipments are under construction. The research center consists of experiment building, research building, power supply building, air supply building, cooling tower foundation.

  • PDF

The Status of the High Enthalpy Plasma Test Facility in Chonbuk National University (전북대 고온플라즈마 설비 구축현황)

  • Choi, Seong-Man;Shin, Eui-Sup;Suh, Young-Sug;Seo, Jun-Ho;Hong, Bong-Geun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.417-420
    • /
    • 2010
  • The high enthalpy plasma research center in Chonbuk national university is under construction with the support of the ministry of the education, science and technology as a fundamental research project The project periods are five year and started at July, 1, 2009. The total project budget is about 39,300 million Won. Four types of plasma equipment will be installed in this research center during the project periods. The equipments are 1 set of 0.4 MW class enhanced Huels type plasma equipment, 1 set of 2.4MW class enhanced Huels type plasma equipment, 1 set of 60Kw RF plasma equipment and 1s set of 200 kW RF plasma equipment.

  • PDF

Conceptual design of electrical, water and gas utilities for MW class plasma wind tunnel in CBNU (전북대학교 MW급 플라즈마 풍동용 공통지원설비 개념설계)

  • Choi, Chea-Hong;Seo, Jun-Ho;Hong, Bong-Guen;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.784-785
    • /
    • 2010
  • The high enthalpy plasma research center in Chonbuk national university is under construction for MW class plasma wind tunnel. Four types of plasma equipment will be installed in the research center. The equipments are 1set of 0.4 MW class enhanced Huels type plasma equipment, 1 set of 2.4 MW class enhanced Huels type plasma quipment, 1 set of 60 kW RF plasma equipment and 1 set of 200 kW RF plasma equipment. And electrical, water and gas utilities to assistant plasma equipments are under construction.

  • PDF

Development of Atmospheric Pressure Plasma Equipment and It's Application to Flip Chip BGA Manufacturing Process (대기압 플라즈마 설비 개발 및 Flip Chip BGA 제조공정 적용)

  • Lee, Ki-Seok;Ryu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2009
  • Atmospheric pressure plasma equipment was successfully applied to the flip chip BGA manufacturing process to improve the uniformity of flux printing process. The problem was characterized as shrinkage of the printed flux layer due to insufficient surface energy of the flip chip BGA substrate. To improve the hydrophilic characteristics of the flip chip BGA substrate, remote DBD type atmospheric pressure plasma equipment was developed and adapted to the flux print process. The equipment enhanced the surface energy of the substrate to reasonable level and made the flux be distributed over the entire flip chip BGA substrate uniformly. This research was the first adaptation of the atmospheric pressure plasma equipment to the flip chip BGA manufacturing process and a lot of possible applications are supposed to be extended to other PCB manufacturing processes such as organic cleaning, etc.

  • PDF

대기압 플라즈마 소스로 식각한 Wafer 반사율 분석

  • Gwon, Hui-Tae;Lee, Ye-Seul;Hwang, Sang-Hyeok;Jo, Tae-Hun;Yang, Chang-Sil;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.403.1-403.1
    • /
    • 2016
  • 일반적으로 실리콘 태양전지의 표면 텍스쳐링 공정방식은 습식 텍스쳐링 방식과 건식 텍스쳐링 방식 2가지로 나뉘어진다. 하지만 현재 습식 텍스쳐링 방식의 경우 Solution을 사용하기 때문에 폐용액으로 인한 환경오염 및 Wafer 오염과 같은 단점을 가지고 있다. 또한 건식 텍스쳐링 방식의 경우는 진공 상태에서 진행되므로 높은 유지 비용이 가장 큰 단점으로 대두 되고 있다. 그러므로 기존의 방식과 다르게 진공을 사용하지 않는 대기압 플라즈마 소스를 텍스쳐링 공정에 적용하였다. 본 연구에서는 대기압 플라즈마 소스로 식각한 Wafer의 반사율을 가스 종류와 유량별 측정하여 분석하였다. 측정된 반사율을 통해 대기압 플라즈마 소스가 텍스쳐링 공정에 적용할 수 있는지 확인하였다.

  • PDF

Comparison of PCB Surface Treatment Effect Using UV Equipment and Atmospheric Pressure Plasma Equipment (UV 장비 및 대기압 플라즈마 장비를 이용한 PCB 표면 처리 효과 비교)

  • Ryu, Sun-Joong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.53-59
    • /
    • 2009
  • Low pressure mercury lamp type UV equipments have been widely used for cleaning and modification of PCB surfaces. To enhance the productivity of the process, we newly developed remote DBD type atmospheric pressure plasma equipment. The productivity of both equipments could be compared by measuring surface contact angle for various transferring speed. By the result of the measurement, we could verify that the productivity of the atmospheric pressure plasma be superior to the productivity of the UV equipment. XPS experiments confirmed that the surface effect of the UV and atmospheric pressure plasma processing are similar for each other. Organic contamination level was reduced after the processing and some surface elements were oxidized for both cases. Finally, the atmospheric pressure plasma equipment was adapted to flip chip BGA's flux printing process and it was concluded that the printing uniformity be enhanced by the atmospheric pressure plasma surface treatment.

  • PDF

Modular Backpropagation Network to Diagnosing Plasma Processing Equipment

  • Kim, Byungwhan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.32.5-32
    • /
    • 2002
  • Processing plasmas are playing a crucial role in either depositing thin films or etching fine patterns. Any variability in process factors (such as radio frequency power or pressure) can cause a significant shift in plasma state. When this shift becomes large enough to change operating condition beyond an acceptable level, overall product quality can greatly be jeopardized. Thus, timely and accurate diagnosis of plasma malfunction is crucial to maintaining device yield and throughput. Many diagnostic systems have been developed, including HIPOCRATES [1] and PIES [2]. Plasma equipment was also diagnosed by combining neural network and expert system called Dempster-Schafer Theory [3]. A fact c...

  • PDF

Diagnosis of Plasma Equipment using Neural Network and Impedance Match Monitoring

  • Byungwhan Kim
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.120-124
    • /
    • 2002
  • A new methodology is presented to diagnose faults in equipment plasma. This is accomplished by using neural networks as a pattern recognizer of radio frequency (rf) impedance match data. Using a match monitor system, the match data were collected. The monitor system consisted mainly of a multifunction board and a signal flow diagram coded by Visual Designer. Plasma anomaly was effectively represented by electrical match positions. Twenty sets of fault-symptom patterns were experimentally simulated with variations in process factors, which include rf source power, pressure, Ar, and $O_$2 flow rates. As an input to neural networks, two means and standard deviations of positions were used as well as a reflected power. Diagnostic accuracy was measured as a function of training factors, which include the number of hidden neurons, the magnitude of initial weights, and two gradients of neuron activation functions. The accuracy was the most sensitive to the number of hidden neurons. Interaction effects on the accuracy were also examined by performing a 2$^$4 full factorial experiment. The experiments were performed on multipole inductively coupled plasma equipment.

  • PDF

The Electric Power System Remote Control Of Semiconductor Plasma Manufacturing Equipment Using Power Line Communication (Power Line Communication을 이용한 반도체 Plasma 장비 전력시스템 원격제어)

  • Lee, Nae-Il;Kim, Jin-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1678-1679
    • /
    • 2007
  • This paper is the electric power system remote control of semiconductor plasma manufacturing equipment using PLC(power line communication). PLC is useful for economical data link but various problems and limitations are caused in using power lines for communications channel Develop of Semiconductor plasma manufactur ing equipment and remote automation technologies of tool develops day after day and standards. Also, Remote electric power control and device module control by GUIRCS(Graphic User Interface Remote Control System) of tool are monitoring in real time.

  • PDF