• Title/Summary/Keyword: Plasma Density

Search Result 1,747, Processing Time 0.035 seconds

Plasma for Semiconductor Processing

  • Efremov, Alexandre
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.1-6
    • /
    • 2002
  • Plasma processing of semiconductor materials plays a dominant role in microelectronic technology. During last century, plasma have gone a way from laboratory phenomena to industrial applications due to intensive progress in both scientific and industrial trends. Improvement and development of new experience together with development of plasma theory and plasma diagnostics methods. A most parameters (pressure, flow rate, power density) and various levels of plasma system (energy distribution, volume gas chemistry, transport, heterogeneous effects) to understand the whole process mechanism. It will allow us to choose a correct ways for processes optimization.

  • PDF

Measurement of Electron Temperature and Plasma Density in Coplanar AC Plasma Display Panels.

  • Cho, Il-Ryong;Moon, Min-Yook;Ryu, Chung-Gon;Choi, Myung-Chul;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.748-751
    • /
    • 2003
  • The electron temperature and plasma density in coplanar alternating-current plasma display panels (AC-PDPs) have been experimentally investigated by a micro Langmuir probe and the high speed discharge images in this experiment.

  • PDF

A Measurements of Radio-Frequency Induction Discharge Plasma using probe method (고주파 유도방전 플라즈마의 푸로우브법에 의한 계측)

  • Park, Sung-Gun;Park, Sang-Yun;Ha, Chang-Ho;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1657-1659
    • /
    • 1997
  • Electron temperature and electron density were measured in a radio-frequency inductively coupled plasma (RFICP) using a probe measurements. Measurement was conducted in an argon discharge for pressures from 10 [mTorr] to 40 [mTorr] and input rf power from 100 [W] to 800 [W], Ar flow rate from 5 [sccm] to 30 [sccm], Spatial distribution electron temperature and electron density were measured for discharge with same aspect ratio (R/L=2). Electron temperature and electron density were discovered depending on both pressure and power, Ar flow rate. Electron density was increased with increasing input power and in creasing pressure, increasing Ar flow rate. Radial distribution of the electron density was peaked in the plasma center. Normal distribution of the electron density was peaked in the center between quartz plate and substrate. From these results, We found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

Study on the Temporal Density Variation of Chemical Species in the Atmospheric Pressure Plasma Process (대기압 플라즈마 프로세스에 있어서 시간에 따른 화학종의 밀도변화 연구)

  • Han, Sang-Bo;Park, Sung-Su;Kim, Jong-Hyun;Park, Jae-Youn
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.45-51
    • /
    • 2013
  • This study is to discuss simulation results with 51 principal chemical reactions in non-thermal plasma space under atmospheric pressure, and the ambient gas was mainly composed of oxygen and nitrogen molecules. The initial density of O and OH radicals under the ambient temperature of 300K is largely generated in comparison with other higher temperature, and the density of O radical decreased from $20{\mu}s$ according to increase the temperature. The initial density of OH radical seemed to decrease steeply at the initial stage. By increasing the initial density of $H_2O$ molecules, O radical's effect was few and the density of OH radical was largely generated about 2 times. In addition, ozone density was increased as increasing the density of O radical, but it was decreased as increasing the density of $H_2O$. In case of the temperature more than 300K, $NO_2$ tend to be removed, but NO was increased than the initial density.

The generation of Uniform High Density Plasma of Inductively Coupled Plasma Etcher Enhanced by Alternating Axial Magnetic Field (축방향 자기장의 주기적 단속을 이용한 유도결합형 플라즈마 식각장비의 고품위 플라즈마 형성)

  • 정재성;김철식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.589-592
    • /
    • 1998
  • The performance of inductively coupled plasma (ICP) is enhanced by axial magnetic field driven by alternating current Helmholtz coils in this work. Langmuir pobe is used to characterize the plasma, and the etching performance is demonstrated with phororesist stripping process. It is shown that its density and uniformity depends on the frequency of driving current to the magnetic field.

  • PDF

Newly Designed Ion Beam Etcher with High Etch Rate

  • Cheong, Hee-Woon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.366-370
    • /
    • 2015
  • New ion beam etcher (IBE) using a magnetized inductively coupled plasma (M-ICP) has been developed. The magnetic flux density distributions inside the upper chamber, where the plasma is generated by inductive coupling, were successfully optimized by arranging a pair of circular coils very carefully. More importantly, the proposed M-ICP IBE exhibits higher etch rate than ICP.

Measurement of excited Xe atoms density in accordance with various barrier ribs in AC-PDP by laser absorption spectroscopy

  • Jeong, Se-Hoon;Oh, P.Y.;Hong, Y.J.;Lee, S.B.;Moon, M.W.;Song, K.B.;Lee, H.J.;Yoo, N.L.;Son, C.G.;Han, Y.G.;Jeong, S.J.;Kim, J.H.;Park, E.Y.;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.949-952
    • /
    • 2006
  • We have measured the excited Xe atoms density in the $1s_5$ metastable states by laser absorption spectroscopy in accordance with various barrier ribs. In this experiment, the average density of one cell in the panel with stripe barrier rib has been measured to be $1.8{\times}10^{12}cm^{-3}$. The panel with close type barrier rib has been measured to be $5.1{\times}10^{12}cm^{-3}$.

  • PDF

Numerical Modeling of an Inductively Coupled Plasma Sputter Sublimation Deposition System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Fluid model based numerical simulation was carried out for an inductively coupled plasma assisted sputter deposition system. Power absorption, electron temperature and density distribution was modeled with drift diffusion approximation. Effect of an electrically conducting substrate was analyzed and showed confined plasma below the substrate. Part of the plasma was leaked around the substrate edge. Comparison between the quasi-neutrality based compact model and Poisson equation resolved model showed more broadened profile in inductively coupled plasma power absorption than quasi-neutrality case, but very similar Ar ion number density profile. Electric potential was calculated to be in the range of 50 V between a Cr rod source and a conductive substrate. A new model including Cr sputtering by Ar+was developed and used in simulating Cr deposition process. Cr was modeled to be ionized by direct electron impact and showed narrower distribution than Ar ions.