• Title/Summary/Keyword: Plasma Density

Search Result 1,731, Processing Time 0.029 seconds

A Study on Photoresist Stripping Using High Density Oxygen Plasma (고밀도 산소 플라즈마를 이용한 감광제 제거공정에 관한 연구)

  • Jung, Hyoung-Sup;Lee, Jong-Geun;Park, Se-Geun;Yang, Jae-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.95-100
    • /
    • 1998
  • A helical inductively coupled plasma asher, which produces low energy and high density plasma, has been built and investigated for photoresist stripping process. Oxygen ion density in the order of $10^{11}/cm^3$ is measured by Langmuir probe, and higher oxygen radical density is observed by Optical Emission Spectrometer. As RF source power is increased, the plasma density and thus photoresist stripping rate are increased. Independent RF bias power to the wafer stage provides a dc bias to the wafer and an ability to add the ion assisted reaction. At 1 KW of the source power, the coupling mechanism of the RF power to the plasma is changed from the inductive mode to the capacitive one at about 1 Torr. This change causes the plasma density and ashing rate decreases abruptly. The critical pressure of the mode change becomes larger with larger RF power.

  • PDF

Plasma Density Measurement of the Hg-Ar(1Torr) by LIF Method (LIF를 이용한 Hg-Ar(1Torr)의 플라즈마 밀도 측정)

  • Lee Jong-Chan;Park Dae-Hee;Yang Jong-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.213-217
    • /
    • 2005
  • In this paper, we introduced a LIF measurement method and summarized the theoretical side. When an altered wavelength of laser and electric power, lamp applied electric power, we measured the relative density of the metastable state in mercury after observing a laser induced fluorescence signal of 404.8nm and 546.2nm, and confirmed the horizontal distribution of plasma density in the discharge lamp. Due to this generation, the extinction of atoms in a metastable state occurred through collision, ionization, and excitation between plasma particles. The density and distribution of the metastable state depended on the energy and density of plasma particles, intensely This highlights the importance of measuring density distribution in plasma electric discharge mechanism study The results confirmed the resonance phenomenon regarding the energy level of atoms along a wavelength change, and also confirmed that the largest fluorescent signal in 436nm, and that the density of atoms in 546.2nm ($6^3S_1 {\to} 6^3P_2$ ) were larger than 404.8nm ($6^3S_1 {\to} 6^3P_1$). According to the increase of lamp applied electric power, plasma density increased, too. When increased with laser electric power, the LIF signal reached a saturation state in more than 2.6mJ. When partial plasma density distribution along a horizontal axis was measured using the laser induced fluorescence method, the density decreased by recombination away from the center.

Plasma Density Measurement of Hg-Ar by LIF Method (LIF를 이용한 Hg-Ar의 플라즈마 밀도 측정)

  • Choi, Yong-Sung;Hwang, Jong-Sun;Park, Kye-Choon;Song, Min-Jong;Kim, Hyeong-Gohn;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, we introduced a LIF measurement method and summarized the theoretical side. When an altered wavelength of laser and electric power, lamp applied electric power, we measured the relative density of the metastable state in mercury after observing a laser induced fluorescence signal of 404.8nm and 546.2nm, and confirmed the horizontal distribution of plasma density in the discharge lamp. Due to this generation, the extinction of atoms in a metastable state occurred through collision, ionization, and excitation between plasma particles. The density and distribution of the metastable state depended on the energy and density of plasma particles, intensely. This highlights the importance of measuring density distribution in plasma electric discharge mechanism study. The results confirmed the resonance phenomenon regarding the energy level of atoms along a wavelength change, and also confirmed that the largest fluorcscent signal in 436nm, and that the density of atoms in 546.2nm ($6^3S_1{\rightarrow}6^3P_2$) were larger than 404.8nm ($6^3S_1{\rightarrow}6^3P_2$). According to the increase of lamp applied electric power, plasma density increased, too. When increased with laser electric power, the LIF signal reached a saturation state in more than 2.6mJ. When partial plasma density distribution along a horizontal axis was measured using the laser induced fluorescence method, the density decreased by recombination away from the center.

  • PDF

An Experimental Study on Multiple ICP & Helicon Source for Oxidation in Semiconductor Process

  • Lee, Jin-Won;Na, Byoung-Keun;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.271-271
    • /
    • 2012
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance, Inductively Coupled Plasma, Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. In this presentation, we will propose the new concept of the multiple source, which consists of a parallel connection of ICP sources and helicon plasma sources. For plasma uniformity, equivalent power (especially, equivalent current in ICP & Helicon) should distribute on each source. We design power feeding line as coaxial transmission line with same length of ground line in each source for equivalent power distribution. And we confirm the equivalent power distribution with simulation and experimental result. Based on basic study, we develop the plasma source for oxidation in semiconductor process. we will discuss the relationship between the processing parameters (With or WithOut magnet, operating pressure, input power ). In ICP, plasma density uniformity is uniform. In ICP with magnet (or Helicon) plasma density is not uniform. As a result, new design (magnet arrangement and gas distributor and etc..) are needed for uniform plasma density in ICP with magnet and Helicon.

  • PDF

Simulation of a Langmuir Probe in an ECR Reactor (ECR Reactor 내의 Langmuir Probe 시뮬레이션)

  • Kim, Hoon;Porteous, Robert K.;Boswell, Rod W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1609-1611
    • /
    • 1994
  • In ECR and helicon reactors for plasma processing, a high density plasma is generated in a source region which is connected to a diffusion region where the processing takes place. Large density and potential gradients can develop at the orifice of the source which drive ion currents into the diffusion region. The average ion velocity may become the order of the sound velocity. Measurements of the ion saturation current to a Langmuir probe are used as a standard method of determining the plasma density in laboratory discharges. However, the analysis becomes difficult in a steaming plasma. We have used the HAMLET plasma simulator to simulate the ion flow to a large langmuir probe in an ECR plasma. The collection surface was aligned with the Held upstream, normal to the field, and downstream. ion trajectories through the electric and magnetic fields were calculated including ion-neutral collisions. We examines the ratio of ion current density to plasma density as a function of magnetic field and pressure.

  • PDF

A Study on Magnetized Inductively Coupled Plasma Using Cutoff Probe (Cutoff Probe를 이용한 자화유도결합 플라즈마의 특성 연구)

  • Son, Eui-Jeong;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1706-1711
    • /
    • 2016
  • Electromagnetic wave simulation was performed to predict characteristics of manufactured cutoff probe at low temperature magnetized plasma medium. Microwave cutoff probe is designed for research the properties of magnetized inductively coupled plasma. It was shown that the cutoff probe method can safely be used for weakly magnetized high density plasma sources. Cutoff probe system with two port network analyzer has been prepared and applied to measure electron density distributions in large area, 13.56MHz driven weakly magnetized inductively coupled plasma source. The results shown that, the plasma frequency confirmed cut-off characteristics in low temperature plasma. Especially, cut-off characteristics was found at upper hybrid resonance frequency in the environment of the magnetic field. In case of a induced weak magnetic field in inductively coupled plasma, plasma density estimated from the cutoff frequency in the same way at unmagnetized plasma due to nearly same plasma frequency and upper hybrid resonance frequency. The plasma density is increased and uniformity is improved by applying a induced weak magnetic field in inductively coupled plasma.

Comparative simulation of microwave probes for plasma density measurement and its application

  • Kim, Dae-Ung;Yu, Sin-Jae;Kim, Si-Jun;Lee, Jang-Jae;Kim, Gwang-Gi;Lee, Yeong-Seok;Yeom, Hui-Jung;Lee, Ba-Da;Kim, Jeong-Hyeong;O, Wang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.185.2-185.2
    • /
    • 2016
  • The plasma density is an essential plasma parameter describing plasma physics. Furthermore, it affects the throughput and uniformity of plasma processing (etching, deposition, ashing, etc). Therefore, a novel technique for plasma density measurement has been attracting considerable attention. Microwave probe is a promising diagnostic technique. Various type of cutoff, hairpin, impedance, transmission, and absorption probes have been developed and investigated. Recently, based on the basic type of probes, modified flat probe (curling and multipole probes), have been developing for in situ processing plasma monitoring. There is a need for comparative study between the probes. It can give some hints on choosing the reliable probe and application of the probes. In this presentation, we make attempt of numerical study of different kinds of microwave probes. Characteristics of frequency spectrum from probes were analyzed by using three-dimensional electromagnetic simulation. The plasma density, obtained from the spectrum, was compared with simulation input plasma density. The different microwave probe behavior with changes of plasma density, sheath and pressure were found. To confirm the result experimentally, we performed the comparative experiment between cutoff and hairpin probes. The sheath and collision effects are corrected for each probe. The results were reasonably interpreted based on the above simulation.

  • PDF

The temporal variability of the longitudinal plasma density structure in the low-latitude F -region

  • Oh, S.J.;Kil, H.;Kim, Y.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.30.4-31
    • /
    • 2008
  • Formation of longitudinally wave-like plasma density structure in the low-latitude F region is now a well-known phenomenon from the extensive studies in recent years. Observations of plasma density from multiple satellites have shown that the locations of the crests of the plasma density that are seen to be stationary during daytime are shifted after sunset. This phenomenon has been understood to be caused by eastward drift of the ionosphere at night. However, the eastward drift velocity of the ionosphere after sunset is not sufficiently large enough to explain the day-night difference in the longitudinal density structure. The just after sunset and the nighttime ionospheric morphologymay be affected by this drift after sunset. In this study, we will investigate the temporal variation of the phase of the longitudinal density structure and vertical plasma drift by analyzing the ROCSAT-1, TIMED/GUVI, and DMSP data and verify the role of the vertical drift after sunset in the change of the phase of the longitudinal density structure.

  • PDF

Magnetic Flux Density Distributions and Discharge Characteristics of a Newly Designed Magnetized Inductively Coupled Plasma

  • Cheong, Hee-Woon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.360-365
    • /
    • 2015
  • Spatial distributions of magnetic flux density in a newly designed magnetized inductively coupled plasma (M-ICP) etcher were investigated. Radial and axial magnetic flux densities as well as the magnetic flux density on the center of the substrate holder were controllable by placing multiple circular coils around the etcher properly. The plasma density non-uniformity in M-ICP (25 Gauss) can be reduced (1.4%) compared to that in ICP (16.7%) when the neutral gas pressure was 0.67 Pa and a right-hand circularly polarized wave (R-wave) can be propagated in to the etcher by making magnetic flux density increases both radially and axially from the center of the substrate holder.

Measurement of electron temperature and density using Stark broadening of the coaxial focused plasma for extreme ultraviolet (EUV) lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.475-475
    • /
    • 2010
  • We have generated Ar plasma in dense plasma focus device with coaxial electrodes for extreme ultraviolet (EUV) lithography and investigated an emitted visible light for electro-optical plasma diagnostics. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ar gas of pressure 8 mTorr. The inner surface of the cylindrical cathode has been attatched by an acetal insulator. Also, the anode made of tin metal. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature and density of the coaxial plasma focus could be obtained by Stark broadening of optical emission spectroscopy (OES). The Lorentzian profile for emission lines of Ar I of 426.629 nm and Ar II of 487.99 nm were measured with a visible monochromator. And the electron density has been estimated by FWHM (Full Width Half Maximum) of its profile. To find the exact value of FWHM, we observed the instrument line broadening of the monochromator with a Hg-Ar reference lamp. The electron temperature has been calculated using the two relative electron density ratios of the Stark profiles. In case of electron density, it has been observed by the Stark broadening method. This experiment result shows the temporal behavior of the electron temperature and density characteristics for the focused plasma. The EUV emission signal whose wavelength is about 6 ~ 16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD). The result compared the electron temperature and density with the temporal EUV signal. The electron density and temperature were observed to be $10^{16}\;cm^{-3}$ and 20 ~ 30 eV, respectively.

  • PDF