• Title/Summary/Keyword: Plasma torch

Search Result 138, Processing Time 0.026 seconds

Spatial Distribution of Excited Argon Species in and Inductively Coupled Plasma

  • 최범석
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1172-1174
    • /
    • 1998
  • Spatial(radial and height) distributions of excited argon species are measured for an inductively coupled plasma under five operating conditions: 1) no carrier gas, 2) carrier gas without aerosol, 3) carrier gas with desolvated aerosol, 4) carrier gas with aerosol, 5) carrier gas with aerosol and excess lithium. A complete RF power mapping of argon excited states is obtained. The excited states of argon for a typical analytical torch rapidly diffuse towards the center in the higher region of the plasma. The presence of excess lithium makes no significant change in the excited states of argon. The increase in the RF power increases the intensity of argon excited states uniformly across the radial coordinate.

Manufacturing and Properties of Low Vacuum Plasma Sprayed W-Carbide Hybrid Coating Layer (진공 플라즈마 스프레이 공정을 이용한 W계 복합 코팅층의 제조 및 특성 연구)

  • Cho, Jin-Hyeon;Jin, Young-Min;Ahn, Jee-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.226-237
    • /
    • 2011
  • W-ZrC and W-HfC composite powders were fabricated by the Plasma Alloying & Spheroidization (PAS) method and the powders were sprayed into hybrid coating layers by using Low Vacuum Plasma Spray (LVPS) process, respectively. Microstructure, mechanical properties, and ablation characteristics of the fabricated coating layers were investigated. The LVPS process led to successful production of W-Carbide hybrid coatings, approximately 400 ${\mu}M$ or above in thickness. As the substrate preheating temperature increased from $870^{\circ}C$ to $917^{\circ}C$, the hardness of the W-ZrC coating layer increased due to decreased porosity. Vickers hardness showed higher value (about 108.4 HV) in W-ZrC hybrid coating material compared to that of W-HfC while adhesive strength was found to be similar in both coating layers. The plasma torch test revealed good ablation resistance of the W-Carbide hybrid coating layers. The relatively high performance W-ZrC coating layer at the elevated temperature is thought to be attributed to both the strengthening effect of ZrC particle remained in the layer and the formation of ZrO2 phase with high temperature stability.

Development of power system and degradation technology using arc plasma for the degradation of non degradable waste water (플라즈마를 이용한 액상 폐기물 처리 전원장치 개발 및 분해 기술 개발)

  • Han, Chul-Woo;Kim, June-Sung;Park, Sang-Hoon;Hwang, Lee-Ho;Rhee, Byong-Ho;Kang, Duk-Won;Kim, Jin-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1900-1902
    • /
    • 2004
  • The degradation systems of non degradable waste water consist of the arc plasma torch, power supply, a feeder of liquid waste and reactors. Output of stable plasma torch, suitable air flux, microscopic atomizing state of waste water and long reaction section must be to degrade waste water more efficiently. In this paper, we are designed the stable power system, the microscopic atomizing state of waste water and the efficient reactors to satisfy various conditions. Non degradable wast water used in this work was $Na_2$EDTA of 1.0 mol. The concentration of $CO_2$ and EDTA was analyzed using GC (Gas Chromatography) and HPLC (High Performance Liquid Chromatography). In the result show that $CO_2$ concentration was about 96% and EDTA was degraded approximately 96%.

  • PDF

A Study on DC Thermal Plasma Generation and ist Characteristics (직류 열 플라즈마의 발생 및 그특성에 관한 연구)

  • 김원규;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1219-1226
    • /
    • 1990
  • This paper is to report the results on the design and construction of a thermal plasma generator with high current DC source. Also, this paper presents the methods to stabilize plasma and to find effects of process variables on plasma characteristics. For this purpose, the reaction chamber, vacuum system, plasma generating torch, magnetic field generating coil with power supply, high current DC source and the other parts have been designed. Fundamental properties of the thermal plasma under various conditions have been measured and analyzed. Magnetic Reynolds Number has been introduced to explain the relationship between plasma and external magnetic field. Through this number, the effect of magnetic field on the plasma has been explained under various flow rates and pressure. A sudden increase in the plasma voltage has been observed with the increase of magnetic field. From this, fundamental changes in plasma flow are believed to occur at the nozzle, and an effort to explain the phenomenon has been tried.

  • PDF

The Present-Day State and Outlooks of Using Plasma-Energy Technologies in Heat-and-Power Industry

  • Karpenko, E.I.;Messerle, V.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.1-4
    • /
    • 2001
  • Urgency of using plasma-energy technologies in power industry, is outlined, increasing of economical efficiency, decreasing of energy consumption and decreasing of environmental pollution, are shown, scientific and technical bases for plasma-energy technologies of fuel utilisation, are designed, results of theoretical, experimental and rig investigations of processes of plasma ignition, gasification, thermochemical preparation for burning and combined processing of coals, are presented, results of realisation of plasma technologies of residual-oil-free (mazout) pulverised-coal boiler kindling, lighting of torch and stabilisation of luid slagging in furnaces with removal of fluid slag, are described.

  • PDF

A Study on Recycling Technology of Wastes by Using PGV(Plasma Gasification & Vitrification) System (PGV(Plasma Gasification & Vitrification) 시스템을 통한 폐기물의 자원화 기술)

  • Rhyew, David;Kim, Young Suk
    • Plant Journal
    • /
    • v.4 no.4
    • /
    • pp.62-70
    • /
    • 2008
  • PGV(Plasma Gasification & Vitrification) system has been developed based on a pyrolysis melting gasification technology that provides the possibilities of acquiring renewable energy. As volume of wastes increases with the rapid industrialization and population growth, eco friendly disposal is drawing more social attention. Pyrolysis plasma technology is regarded as the best environmentally friendly process for the waste disposal among numerous waste disposal processes. Introduced in this paper is the behavior of the plasma torch and a computational fluid simulation dynamics is discussed for designing the melting furnace. Some PGV applications have also been discussed.

  • PDF

A Study on the Synthesis and Characteristics of Carbon Nanomaterials by Thermal Plasma (열플라즈마를 이용한 탄소 나노 물질의 합성 및 특성에 관한 연구)

  • Seong-Pyo Kang;Tae-Hee Kim
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.3
    • /
    • pp.155-164
    • /
    • 2024
  • Physical properties of carbon nanomaterials are dependent on their nanostructures and they are modified by diverse synthesis methods. Among them, thermal plasma method stands out for synthesizing carbon nanomaterials by controlling chemical and physical reactions through various design and operating conditions such as plasma torch type, plasma gas composition, power capacity, raw material injection rate, quenching rate, kinds of precursors, and so on. The method enables the production of carbon nanomaterials with various nanostructures and characteristics. The high-energy integration at high-temperature region thermal plasma to the precursor is possible to completely vaporize precursors, and the vaporized materials are rapidly condensed to the nanomaterials due to the rapid quenching rate by sharp temperature gradient. The synthesized nanomaterials are averagely in several nanometers to 100 nm scale. Especially, the thermal plasma was validated to synthesize low-dimensional carbon nanomaterials, carbon nanotubes and graphene, which hold immense promise for future applications.