• Title/Summary/Keyword: Planting Density

Search Result 530, Processing Time 0.022 seconds

Studies on the Response of Rhizobium Inoculation and Nitrogen Concentration to Soybean Growth in Nutri-culture 2. Effects of Rhizobium Inoculation and Nitrogen Concentration on Growth and Yield of Soybean Cultivars (양액재배에 있어 근류균의 접종 및 질소반응에 관한 연구 2보. 근류균의 접종 및 질소시용량이 대두품종의 생육 및 수량에 미치는 영향)

  • 이홍석;윤성환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.400-407
    • /
    • 1989
  • This experiment was carried out to study the effects of nitrogen concentration of cultural solution, Rhizobium inoculation, and planting density on the growth and yield of soybean cultivars, Hwanggeumkong, Jangbaegkong, Paldalkong, Clark, and non-nodulation isoline of Clark. Rhizobium inoculation increased the stem length, particularly in Hwanggeumkong, Jangbaegkong, and decreased it significantly in non-nodulation Clark. Stem length was increased by the increase in nitrogen fertilization by the 195ppm level and decreased by the increase in plant population density. Rhizobium inoculation also increased the shoot dry weight, but significantly decreased it in non-nodulation Clark. As nitrogen concentration in the cultural solution increased the shoot dry weight decreased in Jangbaegkong and paldalkong. However, the shoot dry weight was decreased by the increase in plant population density. Rhizobium inoculation and the increase in nitrogen concentration of cultural solution increased the ratio of shoot dry weight to root weight. The Rhizobium inoculation and the increase in nitrogen concentration of cultural solution increased the grain yield per pot in Hwanggeumkong and paldolkong, While non-nodulating Clark showed significant decrease in grain yield. Grain yield per pot was also increased by the increase of plant population density. Grain yield was significantly correlated with shoot dry weight, nodule number, and nitrogen content of the soybean plants. The correlation between nitrogen contents of the soybean plants and stem length, shoot dry weight, and nodulation was significant. The allantoin-N content in stem was also significantly correlated with nodulation.

  • PDF

Effect of N-Application Level According to Seedling Density on Tiller Development, Yield and Quality in Direct-Seeded Rice on Flooded Paddy Surface (벼 담수표면산파 시 입모밀도에 따른 시비 조절이 분얼발생, 수량 및 품질에 미치는 영향)

  • Chung, Nam-Jin;Kim, Jeong-Il;Park, Jeong-Hwa;Kim, Je-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.52-57
    • /
    • 2006
  • This research was carried out to determine the effect of controlling nitrogen application on tiller development, yield, and quality of rice under scanty or excess seedling stands in direct-seeded rice on flooded soil surface. Seedling stand was set to 3 levels: scanty $(60/m^2)$, optimum $(120/m^2)$, and excess $(200/m^2)$. In the scanty plot, additional 4 kg/10a nitrogen was applied at the 3rd leaf stage to promote tiller development. On the other hand, applying 3.3 kg/10a nitrogen at 5th leaf stage in the excess plot was omitted to suppress tillering. Maximum numbers of tillers per plant were 15.2 and 8.6 in scanty and excess plots, respectively, as compared with 9.8 in optimum plot. Productive tiller rate decreased with the increase in number of seedling stands. Regardless of seedling density, the first tiller developed on the 3rd node of rice stem from the bottom. The primary tillers developed at 3, 4, 5, 6, 7 nodes in scanty plot, 3, 4, 5 nodes in optimum plot, and 3, 4 nodes in excess plot. The secondary tillers developed only in some portion of plants in scanty and optimum plots. The order of tiller emergence was negatively correlated to stem length, panicle length, non-productive tiller number, grain number per panicle, and fertility in scanty plot, and to perfect grain ratio in excess plot. In the optimum plot, however, the order of tiller emergence was not correlated to any of the mentioned characteristics. The perfect grain ratio of scanty plot was the highest because green-kerneled rice was a very small portion in the primary tillers as compared with those of optimum and excess plots. Yield indexes of scanty and excess plots were 99%, and 97%, respectively, of the yield (494 kg/10a) in optimum plot. In conclusion, when seedling stands are not at optimum level, rice yield and quality similar to optimum planting density level can be obtained by means of controlling nitrogen application.

A Study for the Evaluation of Container Modules; The Technology of Korean Container Tree Production Model (한국형 컨테이너 조경수 생산기술로서 컨테이너 모듈의 성능 평가)

  • Jung, Yong-Jo;Lim, Byung-Eul;Oh, Jang-keun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.5
    • /
    • pp.59-67
    • /
    • 2016
  • In landscape design by public institutions, although the costs and species of landscape trees stipulated by the Korean Public Procurement Service(PPS) are generally adhered to, the PPS regulations about planting trees with well-developed rootlets are almost entirely neglected. This study aimed to evaluate the performance of buried container modules, which are a new technology and product in landscape production that is able to reduce the defect rate while complying with regulations. To this end, this study measured rootlet density, rootlet development length, rootlet survival rate on excavation, and impairments of tree growth for 3 months after root pruning, and compared these variables for the container modules with those for trees that underwent root pruning in bare ground, and those that were cultivated in a container above ground. The results were as follows: First, the rootlet density was 88% for the trees in container modules, which was very high. Trees that underwent standard root pruning in bare ground had a somewhat lower density of 64%. Meanwhile, the trees that were cultivated in pots above ground died, invalidating measurement. Second, in terms of rootlet development and rootlet survival rate, the trees in container modules showed a mean length of 10.4cm, and 100% survival rate, indicating that there was no rootlet damage caused by excavation. For the trees that only underwent root pruning in bare ground, the mean length was 25.6cm and the rootlet survival rate was only half that of the trees in container modules, at 56%, demonstrating considerable damage. Rootlet development did not occur at all in the trees grown in pots. Third, the trees in container modules and those that underwent root pruning in bare ground did not show any deaths during the root pruning process, or any impairments such as stunted leaf growth. Conversely, the trees grown in pots nearly all died, and severe impairments of tree growth were observed. As shown by the results above, when we evaluated the performance of buried container modules, they showed the most outstanding performance of the three models tested in this study. The container modules prevent defects by stimulating early rooting in environments that with poor conditions for growth, or in trees that are not suited to the summer environment Therefore, it is expected that they would be an optimal means by which to enable compliance with rules such as the regulation presented by the PPS.

An Analysis of Young Children's Play Behavior by the Characteristics of Environment in the Forest Experience Center for Children (유아숲체험장의 환경특성에 따른 유아놀이 행태분석)

  • Kang, Taesun;Lee, Myungwoo;Jeong, Moonsun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.6
    • /
    • pp.162-176
    • /
    • 2016
  • The experience and play activities in forest spaces have played an effective role in children's growth and development, therefore, many studies and projects related to forest activity space have progressed actively. However, the focus of previous research has been merely on the effectiveness of forest activity but little on providing the basis for the spatial design of these types of forest activity spaces. Thus, this study aims to identify the relationship between children's developmental play activity and the physical characteristics of forest activity spaces for evidence-based design. First of all, indicators for Cognitive-Social play(CSP) was selected and forest spaces were categorize into play facility spaces and forest spaces. More detailed environmental characteristics of each space were 'play area' and 'paving materials' for play facilities and 'density of tree and shrub', 'slope', 'paving materials' and 'fixing and type of natural loose parts' for forest space. Through environmental inventory and behavior observation, the types of play behaviors and the occurrence frequency of children aged four to five were collected and analyzed. The results were as follows: 1) In play facility spaces, play behaviors occurred at a high frequency at the facility playground with play facilities and sand area. In terms of CSP, functional-solitary and functional-parallel plays occurred predominantly. 2) In forest spaces, various play behaviors occurred at high frequency in the environment with low density planting and various natural loose parts. For CSP, functional-group and symbolic-group plays occurred at a high frequency. 3) Symbolic-group play appeared to be highly affected by environmental characteristics like tree area of scatter density or less, 10~20 degree slope, and the presence of fixed large stumps. In conclusion, this study provides standards of physical environmental characteristics for forest activity space design through direct observation and analysis of children's play behaviors.

Photosynthesis of ×Populus albaglandulosa in Relation to Leaf Age (×Populus albaglandulosa의 엽령별(葉齡別) 광합성(光合成))

  • Kim, Chung Suk;Lee, Suk Koo;Sun, Soon Wha
    • Journal of Korean Society of Forest Science
    • /
    • v.34 no.1
    • /
    • pp.63-71
    • /
    • 1977
  • ${\times}$Populus albaglandulosa has been needed optimum stand density according to various site and its wood usage. It is assumed that optimum stand density can be estimated by investigating of response of ${\times}$P. albaglandulosa to the light factor of stand. For that reason, the photosynthesis of ${\times}$Populus albaglandulosa grown under the controlled planting density was studied in relation to its leaf age by the aid of the Infrared gas analyzer. Rate of net photosynthesis was smaller in matured leaves than young leaves below $8^{\circ}C$, while, it was larger than young leaves above $8^{\circ}C$. Temperature for the maximum net photosynthesis of young leaves and old leaves was about $30^{\circ}C$ and $25^{\circ}C$ respectively. Saturated light intensity varied slightly as leaf age from 28 Klux to 35 Klux, but net photosynthesis rate in the range of light intensity showed deep differences. Old leaves marked the lowest rate, $1.6\;CO_2\;mg/dm^2/hr$, young leaves marked the medium rate, 1.7 to $2.2\;CO_2\;mg/dm^2/hr$, and matured leaves marked the most efficient photosynthesis, 2.9 to $3.5\;CO_2\;mg/dm^2/hr$. Young leaves of 5 days old had the highest light compensation point, while matured leaves of 35 days-old had the lowest point. Rates of dark respiration in both young leaves and old leaves were higher than that of matured leaves. Trees which were planted at space $80cm{\times}80cm$ showed productive assimilation function over the one-third of height where relative light intensity is 35%.

  • PDF

Effect of LED Light Intensity on Seedling Quality and Tuber Production of Potato Stem Cuttings Grown in a Closed-Type Plant Production System (폐쇄형식물생산시스템을 이용한 감자 경삽묘 육묘시 묘소질과 괴경 생산에 대한 LED 광도의 영향)

  • Jo, Man Hyun;Ham, In Ki;Park, Kwon Seo;Cho, Ji Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.468-476
    • /
    • 2020
  • This study was performed to establish light intensity conditions for producing stem cuttings for aeroponic systems suitable for seed potato production using a closed-type plant production system. Shoot tip cultured plantlets of 'Sumi' and 'Chubaek' potato (Solanum tuberosum L.) were acclimatized, cuttings were collected, and stem cuttings were planted. The seedlings were raised for 40 days at different LED light intensities (60, 120, 180, and 240 μmol·m-2·s-1), and were cultivated in an aeroponic system for 80 days. When stem cuttings were raised at 60 μmol·m-2·s-1 LED light intensity, the plant height was the longest, at 17.3 cm for 'Sumi' and 16.1 cm for 'Chubaek', and the number of nodes was the highest in both cultivars. The higher light intensities, produced smaller plants with fewer nodes. The leaf areas, SPAD values, and Fv/Fm values differed slightly between cultivars. The fresh weight of stem cuttings, and the production rate of healthy stem cuttings were the highest at 60 μmol·m-2·s-1. In the aeroponic system, seedlings raised at 60 μmol·m-2·s-1 with LED light intensity showed a difference between the cultivars, but the fresh weight of stems and leaves above the planting plate was the heaviest. In addition, below the planting plate the stem cuttings were longest and the root weight was heaviest at 60 μmol·m-2·s-1 LED light intensity. The number of stolons also differed between cultivars, but was greatest for seedlings raised at 60 μmol·m-2·s-1 LED light intensity, at 4.2/plant for 'Sumi' and 7.7/plant for 'Chubaek'. At 60 μmol·m-2·s-1 LED light intensity, the tuber number and total tuber weight were the best, but the higher the light intensity, the smaller the total tuber number and total tuber weight for both cultivars. In conclusion, when producing potato stem cuttings for aeroponic systems using a closed-type plant production system, the most suitable LED light intensity for raising seedlings was found to be 60 μmol·m-2·s-1.

Effect of the Landscape Crop, Chrysanthemum zawadskii on Reducing Soil Loss in Highland Sloping Area (경관작물 구절초의 고랭지 경사지 밭 토양유실 경감 효과)

  • Kim, Su Jeong;Sohn, Hwang Bae;Hong, Su Young;Kim, Tae Young;Lee, Jung Tae;Nam, Jung Hwan;Chang, Dong Chil;Suh, Jong Taek;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • There is high vulnerability of soil loss in sloping and highland used for agricultural production due to the low surface covering in summer rainy season. This study evaluated the surface-covering rate of landscape crop in reducing soil loss in the highland. The experiment was conducted in a 55% sloped lysimeter with three treatments of planting density using Korean native chrysanthemum, and investigated the soil coverage rate, run-off water, and soil erosion. The three treatments according to the degree of soil covering are bare soil as the control treatment TC, coverage rate of 43-59% for treatment T1, and, coverage rate of 63-81% for treatment T1, and T2. During the cultivation period, the average reduction of run-off water was 71% for treatment T1 and 76% for treatment T2, which are better, compared with the control. The reduction in eroded soil was 84% in treatment T1 and 98% for treatment T2, which is also better than the control treatment. Therefore, it is possible to alleviate the soil loss in sloping lands by planting chrysanthemum, which is superior among the perennial plant species and considered as a crop with economic value.

Economic Injury Level of Mamestra brassicae L. (Lepidoptera: Noctuidae) on Early Stage of Cabbage (Brassica oleracea L. var capitata L.) (양배추에서 생육초기 도둑나방의 경제적피해수준 설정)

  • Kang, Taek-Jun;Jeon, Heung-Yong;Kim, Hyeong-Hwan;Yang, Chang-Yeol;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.48 no.2
    • /
    • pp.237-243
    • /
    • 2009
  • This study was conducted to develop economic injury level (ElL) and economic threshold (ET) of Cabbage armyworm, Mamestra brassicae L. on cabbage (Brassica oleracea L. var). The changes of cabbage biomass and M. brassicae density were investigated after introduction of larval M. brassicae (2nd instar) at different densities: 0, 1, 2, 4, 8, and 16 larvae per plant at 40 d after planting for an open field experiment, and 0, 2, 5, 8 and 12 larvae per plant at 25 d after planting for a glass house experiment. In the field experiment, the yield loss of cabbage was not significantly different among treated-plots at 30 d after the larval introduction, showing an over-compensatory response of cabbage plants to M. brassicae attack. In the glasshouse experiment, however, the biomass of cabbage at 15 d after the larval introduction significantly decreased with increasing the initial introduced number of M. brassicae, resulting in 38.3, 36.7, 21.7, 23.3 and 16.7g in above treated-plots, respectively. The relationship between cumulative insect days (CID) and yield loss (%) of cabbage was well described by a nonlinear logistic equation. Using the estimated equation, ElL of M. brassicae on cabbage was estimated at 44 CID per plant based on the yield loss 14%, which take into account of an empirical gain threshold 5% and marketable rate 91% of cabbage. Also, ET was calculated at 80% of the EIL: 35 CID per plant. Until a more elaborate EIL-model is developed, the present result may be useful for M. brassicae management at early growth stage of cabbage.

Growth and Yield Variations among Generations in Field Cultivation of Virus-free Sweet Potato Plants (고구마 바이러스 무병묘의 세대간 생육 및 수량 변이)

  • Lee, Seung Yeob;Lee, Na Ra
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • This work was conducted to investigate the variation of growth and yield among three generations ($TC_0$, $TC_1$, and $TC_2$) in the field cultivation of virus-free sweetpotato (Ipomoea batatas) plants. Virus-free generations of three cultivars ('Matnami', 'Shinhwangmi', and 'Yeonhwangmi') were cultivated with $75{\times}25cm$ planting density on May 20th, covered with black vinyl film. At 30 days after planting, vine growth in $TC_0$, $TC_1$, and $TC_2$ was significantly increased as compared to the farmer's plant, and vine length in $TC_0$ showed the highest growth among treatments. At harvesting time after 120 days, vine diameter, number of node, and number of branch in $TC_0$, $TC_1$, and $TC_2$ were more increased than farmer's plant, but were not statistically significant. Fresh weight of shoot in $TC_0$, $TC_1$, and $TC_2$ was significantly increased as compared to the farmer's plant, but was not statistically significant among generations or cultivars. Number of tuber per plant and mean weight of tuber in $TC_0$ and $TC_1$ showed significant increasement, but that in $TC_2$ did not show significant difference as compared to the farmer's plant. Weight of tuber per plant in $TC_0$, $TC_1$, and $TC_2$ was significantly increased as compared to the farmer's plant. Marketable yield, percentage of marketable tuber, and percentage of small tuber (40 to 200g) in $TC_0$, $TC_1$, and $TC_2$ was significantly increased as compared to the farmer's plant. The large tuber over 300g showed the lowest percentage in $TC_0$. Marketable yield in $TC_2$ was significantly decreased as compared to $TC_0$, and was not significantly different as compared to the farmer's plant. Marketable yield in 'Matnami' was highest among cultivars. From this results, Farmers are required to renew every three years to maintain the yield and quality of virus-free plants. However, the exchange period of virus-free plants is desirable to renew every 2 or 3 years according to the degree of virus reinfection.

Effect of Seedling Age on Growth and Yield at Transplanting of Sorghum (Sorghum bicolor L. Moench) (수수 묘의 이식 시기가 생육 및 수량에 미치는 영향)

  • Jo, Su-Min;Jung, Ki-Youl;Kang, Hang-Won;Choi, Young-Dae;Lee, Jae-Saeng;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.50-56
    • /
    • 2016
  • Direct seeding of sorghum (Sorghum bicolor L. Moench) has a problem of low yield including poor establishment. This poor establishment results from poor quality seed, poor seedbed preparation, seedling pests, poor sowing technique and high soil temperature. This study sought to establish the age at which sorghum seedlings can be transplanted with minimal effects on grain yield. Transplants were raised in 128 nursery tray pot. Five seedling ages were established by transplanting at 10 (T10), 15 (T15), 20 (T20), 25 (T25) and 30 (T30) days after planting (DAP). The treatment combinations were arranged in a randomized complete block design and replicated three times with an individual plot size of $6{\times}5m^2$. Each plot had five ridges with a planting space of $0.60{\times}0.20m^2$ at one plants per stand. Results showed that seedling age on transplanting significantly affected growths and yields to sorghum after transplanting. Plant heights and diameters of transplants at T15 were longer than the other transplants. Conclusively, The advantages of this practice were better control of crop density and greater yields; either to fill gaps after emerging and thinning of crops or to compensate for a growth period that was too short for a complete crop cycle.