• Title/Summary/Keyword: Plantar pressure distribution

Search Result 75, Processing Time 0.018 seconds

Analysis of Plantar Foot Pressure During Golf Swing Motion of Pro & Amateur Golfer (프로와 아마추어 골퍼의 골프스윙 동작시 족저압력 비교 분석)

  • Lee, Joong-Sook;Lee, Dong-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.41-55
    • /
    • 2005
  • In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Regional change of force acting, in address, is evenly distributed on both feet. In back swing top, 76% on right foot, 75% on left foot as impact, and 86% on left foot as finish. As regional force acting, in address, pros get high marks on rare and inside of right foot and rare and outside for amateurs. In back swing top, it is higher as fore and inside of left foot, pros as rare part of right foot and amateurs as forefoot. In impact, it is higher for pros and amateurs in outside and rare part of left foot and fore and inside of right foot. In finish, for both pros and amateurs, it is higher for outside and rare parts of left foot. 2. For each club, forces are evenly distributed on both feet in address. In back swing top, the shorter a club is, the higher impact on right foot and the higher finish distribution on left foot. For all the clubs used, in each region, pros get higher on rare and inside of right foot and as amateurs on rare and outside of left foot in address. In back swing top, for all clubs, pros get higher on rare and outside of right foot as fore and outside for amateurs. In impact acting, for all clubs, rare and outside of left foot get higher. In finish, force concentrates on rarefoot. 3. On both feet force, right foot forces of amateurs is higher than those of pros in back swing top. In impact and finish, pros get higher on left foot.

In-shoe Loads during Treadmill Running (트레드밀 달리기시 신발 내부의 부하에 관한 연구)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.105-119
    • /
    • 2004
  • To enhance our understanding of the loads on the foot during treadmill running, we have used a pressure-sensitive insole system to determine pressure, rate of loading and impulse distributions on the plantar surface during treadmill running, both in minimally cushioned footwear and in cushioned shoes. This report includes pressure, rate of loading, impulse and contact time data from a study of ten subjects running on a treadmill at 4.0m/s. Among heel-toe runners, the highest peak pressures and highest rates of loading were observed under the centre of the heel and in the medial forefoot. The arch regions were only lightly loaded. Contact time was greater in the forefoot than in the heel. Two-thirds of the impulse recorded during the step was the result of forces applied through the forefoot, mostly in the region of the metatarsal heads. The distribution of loads in the shoe suggests that the load distributing properties of the cushioning system are most important in the centre of the heel, under the metatarsal heads and great toe. Shock attenuation is primarily required under the centre of the heel and to lesser extent under the metatarsal heads. Some energy dissipation may be desirable in the heel region because it causes shock to be absorbed with less force. All the 'propulsive' effort is applied through the forefoot. Therefore, this region should as resilient as possible.

Factor Analysis of the Somatosensory for Foot according to the Instability Level of Snatch Lifting (역도 인상동작 불안정성 수준에 따른 발바닥 체성감각요인 분석)

  • Moon, Young Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Objective: It is to find factors related to stability through analysis of plantar pressure factors according to the level of instability when performing Snatch. Method: Foot pressure analysis was performed while 10 weightlifters performed 80% of the highest level of Snatch, and motion was classified and analyzed in 3 grades according to the level of instability. Results: First, in Bad Motion, the movement distance of the pressure center in the direction of ML and AP was larger significantly in Phase 2. Second, in Phase 2, the number of zero-crossing in the AP direction was larger statistically significantly in Good Motion. Third, in the bad motion in Phase 3, the number of zero-crossing in the ML direction showed a significantly larger value. Fourth, in Phase 4, it was found that the more stable the lock out motion, the greater the activity of foot controlling in the left and right directions. Fifth, Phase 3, the greater the Maximum/Mean foot pressure value, the more stable the pulling action. Sixth, in Phase 2, the foot pressure was concentrated with a wide distribution in the midfoot and rearfoot. Seventh, the triggering number of the forefoot region was small in the last pull phase. Eighth, the number of triggers in the toe area was significantly higher during Good Motion in Phase 4. Conclusion: Summarizing the factors of instability in Snatch, there was no significant difference in Phase 1 for each condition. In order to enhance the stability in Phase 2, the sensory control ability in the AP direction is required, and focusing the foot pressing motion with a wide distribution in the middle and rear parts increases the instability. In Phase 3, it was found that the more unstable, the more sensory control activity was performed in the ML direction, the stronger the forefoot pressing action should be performed for a stable Snatch. In Phase 4, It is important that the feet sensory control activity in ML directions and the control ability of the toes in order to have stable Lock out motion.

Activity and Safety Recognition using Smart Work Shoes for Construction Worksite

  • Wang, Changwon;Kim, Young;Lee, Seung Hyun;Sung, Nak-Jun;Min, Se Dong;Choi, Min-Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.654-670
    • /
    • 2020
  • Workers at construction sites are easily exposed to many dangers and accidents involving falls, tripping, and missteps on stairs. However, researches on construction site monitoring system to prevent work-related injuries are still insufficient. The purpose of this study was to develop a wearable textile pressure insole sensor and examine its effectiveness in managing the real-time safety of construction workers. The sensor was designed based on the principles of parallel capacitance measurement using conductive textile and the monitoring system was developed by C# language. Three separate experiments were carried out for performance evaluation of the proposed sensor: (1) varying the distance between two capacitance plates to examine changes in capacitance charges, (2) repeatedly applying 1 N of pressure for 5,000 times to evaluate consistency, and (3) gradually increasing force by 1 N (from 1 N to 46 N) to test the linearity of the sensor value. Five subjects participated in our pilot test, which examined whether ascending and descending the stairs can be distinguished by our sensor and by weka assessment tool using k-NN algorithm. The 10-fold cross-validation method was used for analysis and the results of accuracy in identifying stair ascending and descending were 87.2% and 90.9%, respectively. By applying our sensor, the type of activity, weight-shifting patterns for balance control, and plantar pressure distribution for postural changes of the construction workers can be detected. The results of this study can be the basis for future sensor-based monitoring device development studies and fall prediction researches for construction workers.

Biomechanical Application of Plantar Pressure Distribution for Walking on Uneven Rocky Surface (Uneven Rocky Surface 이동 시 압력분포를 적용한 운동역학적 활용)

  • Chung, Yong-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.387-397
    • /
    • 2009
  • Physical activity has been increased with increased leasure time. Specifically, due to our mountainous geographical benefits, people actively participate in hiking and climbing as regular daily activities. Thus, more stable and comfortable hiking boots are required to walk on uneven and sloped rocky surface for a long period of time. 5 male subjects were recruited for testing planter pressure patterns of four different conditions(barefoot, classic hiking boot, stiffness 60 and stiffness 65). Tested hiking boots(stiffness 60 and stiffness 65) consists of the multiple pieces of outsoles as they are designed for a better shock absorption. In the results, some positive aspects of stiffness 60 and stiffness 65 such as wide contact area and powerful propulsive patterns at take off was observed compared to the classic hiking boots. Therefore, biomechanical development of hiking related clothes and footwear as well as equipment would be beneficial for people who enjoy hiking to maximize their quality of activities.