• Title/Summary/Keyword: Plant uptake

Search Result 828, Processing Time 0.033 seconds

Changes in Rice Yield and Soil Physico-Chemical Properties as Affected by Annul Application of Silicare Fertilizer to the Paddy Soil (답토양(畓土壤)에 규산질비료(珪酸質肥料)의 매년연용(每年連用)이 년차간(年次間) 벼수량(收量) 및 토양(土壤)의 이화학적 성질변화(性質變化)에 관(關)한 연구(硏究))

  • Kim, Chang-Bae;Park, No-Kwuan;Park, Seon-Do;Choi, Dae-Ung;Son, Sam-Gon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.123-131
    • /
    • 1986
  • This study was conducted to evaluate the effect of annual application of silicate fertilizer on rice yield and soil physico-chemical properties. Field experiment was done on the condition of fertilization of silicate fert. 150 and 250kg/10a to the clay loam paddy field for ten years from 1975 to 1984. Data for rice growth and nutrient uptake was analyzed for ten years base. The results obtained are as follows. 1. Average unhulled rice yield for 10 years increased at 16% in the treat of silicate fert. 150kg/10a annually applied in comparison with the N.P.K treated plot, but silicate fert. 250kg/10a treated plot was decreasing tendency somewhat in yield. 2. Amount of potassium uptake of rice straw at the harvesting stage was positively significant recognized with unhulled rice yield and straw yield of rice plant. 3. The amounts of N, $P_2O_5$ and $K_2O$ uptake in the treat of silicate fert. 150kg/10a were much more than those of silicate fert. 250kg/10a treated plot. However the treat of silicate fert. 250kg/10a increased the amounts of CaO, MgO and Silica uptake than other treats markedly. Especially the treat of silicate fert. 150kg/10a was higher in nitrogen recovery rate than other nutrients recovery rate, but the recovery of silica was low. 4. The treat of silicate fert. 250kg/10a annually applied markedly decreased the translocation rate of nitrogen, potassium and silica from straw to the unhulled rice grain. 5. Ten years' average value of soil O.M. content was much more in the treat of silicate fert. 150kg/10a which show higher yield increase than other treats, but in the treat of silicate fert. 250kg/10a, soil O.M. content was lower, however silicate content in soil was the most among other treats.

  • PDF

Evaluation of the Parameters of Soil Potassium Supplying Power for Predicting Yield Response, K2O Uptake and Optimum K2O Application Levels in Paddy Soils. -II. Determination of Potassium Supplying Power by Gapon equation and Kas/Kai and Response to K2O application (수도(水稻)의 가리시비반응(加里施肥反應)과 시비량추정(施肥量推定)을 위한 가리공급력(加里供給力) 측정방법(測定方法) 평가(評價) -II. Gapon식(式)과 Kas/Kai에 의한 가리공급력(加里供給力) 측정(測定)과 시비반응(施肥反應))

  • Park, Yang-Ho;Ahn, Su-Bong;Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.363-370
    • /
    • 1984
  • In order to predict the possible fertilizer requirement from the K supplying capacity of soil, the relative K activity ratio, Kas/Kai and Gapon coefficients, KG. were determined for the soil samples before flooding and at heading stage of rice in pot experiment. These parameters assumed as the K supplying capacity of soils were discussed through correlation with other factors such as grain yields or the amounts of $K_2O$ uptake by the rice plant. The results may be summarized as follows: 1. The KGo values in soils before flooding were 7.8, 6.6, and 7.1, whereas the Kas/Kai values were 1.37, 1.26 and 2.11, respectively, in clay, loam and sandy loam soils. 2. The significant yield responses to the application of potassium fertilizer were observed whenever the KG values in soils at heading stage become larger to the original KG values, regardless of any levels of fertilizer application. 3. The linear correlations between the exchangeable cation ratios [Kex./(Ca+Mg) ex.:me/100g] in soils and the potassium activity ratios ($[K^+]/\sqrt{[Ca^{{+}{+}}+Mg^{{+}{+}}]}$: mole/l) in equilibrium solutions were observed with different linear gradients according to the soil properties. 4. The Kas/Kai in the soils, estimated prior to the experiment, showed high correlations with the grain yields or the amounts of $K_2O$ uptake in the all treatments, while the Kas/Kai and the KGo in the soils at heading stage showed high correlations with the grain yields or the amounts of $K_2O$ uptake in only N 15 Kg/10a treatments. 5. The Kas/Kai and the KGo values determined in the soil at heading stage of rice showed high negative correlation each other and they could be used as soil factors for predicting potassium fertilizer requirement.

  • PDF

Changes in Barely Yield and Soil Physcio-Chemical Properties Affected by Long-Term Fertilization to the Upland Soil (밭토양(土壤)에서 삼요소(三要素) 장기연용(長期連用)에 의(依)한 대맥(大麥) 수량(收量) 및 토양(土壤)의 이화학적(理化學的) 성질변화(性質變化))

  • Kim, Chang-Bae;Park, No-Kwuan;Park, Seon-Do;Choi, Dae-Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.20-24
    • /
    • 1993
  • A long term fertilizer trial has been conducted on a silty clayloam soil with barley as test crop since 1975. The treatments included NPK, NK, NP, and PK, and no fertilizer. This paper is to report the barley yield trend during 16 years(1975~1990) and the soil chemical properties and nutrient uptake by barley in 1990. Following is the summary of the results. 1. The average yield of barley in 16 years were in the order of NPK(100%) > PK(69%) > NP(55%) > No Fertilizer(35%) > NK(24%). Of special interst was that in 16th year the yield of barley in NK plot, namely without P, was nil. 2. In NK plot where the yield of barley was nil in 16th year, the uptake of N, P, and K by plant was lowest amomg the treatments and N, K fertilizer uptake efficiencies were nagative. 3. The soil analysis in 16th year revealed that in NK plot the pH, the available P and exchangeable Ca and Mg were very low. In 16 years average, there was positive correlation between the yield of barley and available P and exchangeable Mg in the soil. One interesting point was that in 16th year the $NO_3-N$ in the soul was relatively high, but N uptake by barley was very low.

  • PDF

Effects of Nutrient Strength and Light Intensity on Nutrient Uptake and Growth of Young Kalanchoe Plants (Kalanchoe blossfeldiana 'Marlene') at Seedling Stage (배양액의 농도와 광강도가 단일처리전 칼랑코에 유묘의 양분흡수와 생육에 미치는 영향)

  • Lu, Yin-Ji;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2005
  • It is very important to make shorter and healthier pot plants with increased numbers of branch at a growing stage before short-day exposure. Especially light and nutrient conditions directly affect the growth and quality of the plants as described above. In this study, the effects of nutrient strength and light intensity on the nutrient uptake and growth of young Kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') during this growth stage were investigated. The plants were grown under two radiation integral (15.8 and 7.9 $mol{\cdot}m^{-2}{\cdot}d^{-1}$, PPF) and three EC (0.8, 1.6 and 2.4 $dS{\cdot}m^{-1}$) conditions. Leaf area, fresh weight, dry weight and number of branch were higher at a higher PPF, and this tendency was more evident at an EC above 1.6$dS{\cdot}m^{-1}$. The plants became higher at a lower PPF. When the EC was at 0.8 $dS{\cdot}m^{-1}$, the plants did not grow so healthy regardless of PPF conditions. EC decrement in the nutrient solution was increased with increase of nutrient strength. With growth stage, the nutrient uptake was increased with increases of nutrient strength and PPF. At a higher PPF, $NO_3-N,\;K^{+}\;and\;Ca^{2+}$ were much more absorbed, and especially the uptake of $K^{+}$ was 1.1 to 1.5 times greater than that or $NO_3-N$. From the results, the EC needed above 1.6 $dS{\cdot}m^{-1}$ during the seedling stage in order to make more healthy Kalanchoe plants having more leaf area, fresh weight, dry weight and number of branches under adequate light conditions.

Effects of Lime and Humic Acid on the Cadmium Availability and its Uptake by Rice in Paddy Soils (논토양중 카드뮴 유효도와 수도의 흡수이행에 미치는 석회 및 Humic acid 시용효과)

  • Kim, Min-Kyeong;Kim, Won-Il;Jung, Goo-Bok;Park, Kwang-Lai;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • This study was conducted to how the effect of lime and humic acid on cadmium availability and ie uptake by plant grown in contaminated paddy soils with heavy metal. The treatment levels of lime were 2.5 and 5.0 ton/ha and that of humic acid were 1 and 2%. The contents of 0.1N HCl extractable Cd were reduced with lime and humic acid and were negatively correlated with CEC as well as soil pH. The sequential extraction procedure was used to fractionate the heavy metals in soils into the designated from exchangeable (0.5 M $KNO_3$) water soluble ($H_2O$), organically bound (0.5 M NaOH), carbonate (0.05 M $Na_{2-}$ EDTA) and sulfide/residual (4 M $HNO_3$). In soil amended with 2.5 ton/ha lime and 1% humic acia che- mical forms of Cd at tillering stage were predominant exchangeable + water soluble extractable Cd, whereas that at harvesting stage were predominant carbonate + sulfide/residual extractable Cd. The exchangeable forms of Cd in soil with lime and humic acid were negatively correlated with soil pH during the harvesting period. Total absorbed Cd of paddy rice tended to occur in the order of root > stem > leaf > brown rice. Cd contents of brown rice with lime and humic acid treatment were 0.09 and 0.08 mg/kg, respectively. That were lower than control, 0.20 mg/kg. It could be that treatment of lime and humic acid in polluted soil by heavy metals would reduce the uptake of heavy metals by piano and be a temporary method of reclamation at the highly heavy Metal contaminated soils.

Establishment of Safe Management Guideline Based on Uptake Pattern of Pesticide Residue from Soil by Radish (토양잔류 농약의 무 흡수양상 및 토양 안전관리기준 설정)

  • Hwang, Jeong-In;Kwak, Se-Yeon;Lee, Sang-Hyeob;Kang, Min-Su;Ryu, Jun-Sang;Kang, Ja-Gun;Jung, Hye-Hyeon;Hong, Sung-Hyeon;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.278-285
    • /
    • 2016
  • BACKGROUND: Uptake patterns of ${\alpha}$-, ${\beta}$-isomers and sulfate metabolite of endosulfan (ED) by radishes grown in treated soils with ED concentrations of 2 and 10 mg/kg were investigated to establish soil management guidelines for ensuring the safety of radishes from ED residues. METHODS AND RESULTS: All samples of soils and radish plants separated into shoot and root parts were analyzed for ED residues using a gas-chromatography mass spectrophotometer, and the results were used to calculate the bioconcentration factor (BCF), indicating the ratio of ED concentrations between radishes and soils. During the experimental period, uptake and distribution rates of ED-sulfate in radishes were the highest, followed by ${\alpha}$- and ${\beta}$-ED. The BCF values to initial ED concentrations in soils were greater for root parts (0.0077 to 0.2345) than for shoot parts (0.0002 to 0.0429) and used to obtain regression equations by time. Long-term BCFs estimated by the obtained equations ($R^2$ of 0.86 to 1.00) were evaluated with the maximum residue limit (0.1 mg/kg) of ED for radishes, in order to suggest safe management guidelines of ED for radish-cultivating soils. CONCLUSION: Suggested guidelines showed the significant dependency on duration for radish cultivation and exposed concentration of ED in soil.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

Utilization of Phosphorus and Nitrogen Fertilizers by Paddy Rice -A six years internationally coordinated study using isotopes- (수도(水稻)에 대(對)한 인산(燐酸) 및 질소질비료(窒素質肥料)의 효용에 관(關)한 연구(硏究) -동위원소(同位元素)를 이용(利用)한 6 개년간(個年間)의 국제적(國際的) 공동시험결과(共同試驗結果)-)

  • Kim, H.S.;Cho, B.H.;Lee, C.Y.;Lee, E.W.;Shim, S.C.;Yoo, S.H.;Kwon, Y.W.;Jo, J.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.13-26
    • /
    • 1968
  • To establish the most efficient method of nitrogen and phosphorus fertilization in paddy rice a series of internationally coordinated research using $N^{15}\;P^{32}$ isotopes were carried out from the year 1962 through 1967, supervised by the Joint FAO/IAEA Division of Atomic Energy in Agriculture under the auspicies of FAO, UN. In Korea College of Agriculture, Seoul National University had been participated in the Coordinated Research Programme from the year 1963 through the last year, arid the results obtained through the six years' researches are summarized as follows: 1. In the application of superphosphate broadcasting or placement at the surface of paddy as basal dressing was most efficient. 2. Split or late application of superphosphate did not affect the grain yield of the rice, but its efficiency in the rice plant uptake was less than in the case of basal dressing of whole amounts. 3. The contents of available soil phoshorus of the experimental sites in Korea were above 60 ppm, and the efficiency of phosphorus utilization of the rice from the fertilizer was approximately 10 per cent. The grain yield response of the rice to phosphorus application in Korea was rather small comparing to those of other countries. 4. The nitrogen uptake of the rice plants from the fertilizer was most efficient when the fertilizer was applied at the time of ear prime growth. However, the most efficient utilization of nitrogen did not necessarily accompany the maximum yield of the rice and basic application of adequate amount of nitrogen was required to secure proper number of panicles. 5. In the application of nitrogenous fertilizer shallow placement at 5 cm depth was most efficient. The effect of split application of nitrogen was not so noticeable. It seemed due to the fact that total application amount of nitrogen, 60 kg N/ha, was smaller than that of usual dosage in Korea. 6. The efficiency of nitrogen utilization of the rice from the fertilizer was about 40 percent in Korea, and the yield reponse of the rice plant to nitrogen application was remarkable comparing to those of other countries, showing the marked differences in the fertilizer efficiency and grain yield according to the application method. 7. The nitrogen uptake of the rice plant was not likely affected by the time and the rate of phosphorus application whereas the efficiency of phosphorus utilization was affected to some degree by the method of nitrogen application.

  • PDF

Effect of Different Levels of Applications of Illite on the Growth of Red Pepper in Soil (토양에 점토광물 일라이트 처리시 고추의 생장에 미치는 영향)

  • Lee, Seok-Eon;Kim, Deok-Hyun;Hong, Hyeon-Ki;Kwon, Sang-Moon;Lee, Moon-Soon;Woo, Sun-Hee;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.339-343
    • /
    • 2012
  • This study was performed to examine the effect of the clay mineral illite on the improvement of soil and plant growth. Red pepper (Capsicum annuum L.) was used as a test vegetable crop. The experiment was performed during six weeks in the plantation of the Chungbuk National University. Its seedlings were cultivated in the soil normally used for horticultural purpose. Among the seedlings germinated the healthy and regular size of seed were selected and cultivated in the plantation. They were treated with two forms of illite, particulate (PA) and powder (PW), at the following application rates: standard application[P1 (PA1, PW1), soil: illite = 1:20 (w/w)] and two times [P2 (PA2, PW2), 1:10 (w/w)] of standard application. Untreatment (P0) was used as a control soil. At six weeks of cultivation, their growth lengths were correspondingly increased as the application rate was increased ranging from P0, P1, and P2. Their growth length was a little greater with the application of powder illite (PW) than with the particulate illite (PA). Based on the plant analysis of root, leaf, and stem of red pepper, the uptake amounts of K, Ca, and Mg, were correspondingly increased, as the application rate was increased ranging from P0, P1, and P2 respectively. At the same application rate, their amounts taken up in the respective parts were higher with the application of PW illite than on the PA one. Especially the amounts of Ca and Mg were higher in the stem and leaf than root. Consequently, it appears that the illite treatment, especially, PW form of illite, enhance the growth of red pepper in the plantation during the six weeks of experiment.

Effect of Phosphate Bio fertilizer Produced by Enterobacter intermedium on Rhizosphere Soil Properties and Lettuce Growth (Enterobacter intermedium으로 제조된 인산생물비료가 토양 특성 및 상추의 생육에 미치는 영향)

  • Park, Bum-Ki;Na, Jung-Heang;Hwang-Bo, Hoon;Lee, In-Jung;Kim, Kil-Yong;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.15-24
    • /
    • 2005
  • Enterobacter intermedium oxidizes glucose to gluconic acid and sequentially converts gluconic acid to 2-ketogluconic acid (2-KGA) under aerobic condition. Shaking incubation of E. intermedium in a broth medium containing 22.5 g glucose, 8.2 g gluconic acid and 40 g rock phosphate per liter resulted in $1028mg\;L^{-1}$ soluble phosphate. The culture broth was used as phosphate bio-fertilizer (PBF) in this experiment. To evaluate PBF produced by E. intermedium on lettuce growth, five treatments (PBF1/3, PBF2/3, PBF3/3, BP, and MF) were used. In MF and BP treatments, $P_2O_5$ 5.9 kg of mineral fertilizer per 10a was added, while in PBF1/3, PBF2/3, and PBF3/3 treatments, culture broth containing one third, two third, and same amount of soluble $P_2O_5$ 5.9 kg per 10a was applied, respectively. At 20, 35, and 50 days after transplanting of lettuce, plant growth components, biomass, enzyme activities and soil chemical properties were analyzed. Dehydrogenase activity and available phosphate concentration of rhizosphere in phosphate bio fertilizer treatments (PBF1/3, PBF2/3, PBF3/3) were generally higher compared to MF and BP treatments. Soil biomass in PBF3/3 treatment was significantly higher than MF and BP treatments at early growth stage. However, there was no significant difference among all treatments with time. Plant fresh weights in PBF1/3, PBF2/3, and MF treatments were better than those in BP and PBF3/3 treatments. However, in PBF2/3 treatment the highest fresh weight was discovered where alkaline phosphatase activity was generally higher than other treatments at 35 and 50 days. Enhancement of lettuce growth at 35 and 50 days in PBF2/3 treatment was associated with greater phosphate uptake in lettuce tissue. As regarding all results, PBF showed better lettuce growth compared to mineral phosphate fertilizer where PBF2/3 treatment resulted in increase of lettuce fresh weight by 23% and phosphate uptake by 50%.