• Title/Summary/Keyword: Plant temperature

Search Result 4,485, Processing Time 0.033 seconds

Antifreeze proteins promote the germination of low temperature-treated petunia seeds via regulation of antioxidant- and proline-related genes

  • Pe, Phyo Phyo Win;Kyua, Swum Yi;Naing, Aung Htay;Park, Kyeung Il;Chung, Mi-Young;Kim, Chang Kil
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.203-208
    • /
    • 2020
  • The involvement of antifreeze proteins (AFPs; type I and III) in the germination of low temperature-treated petunia seeds (cv. 'Mirage Rose') was investigated. The addition of AFPs (300 or 500 ㎍/l) in low-temperature treatment significantly promoted the germination of seeds compared with that in which AFPs were not added. Among all treatments, treatment with AFP I added at 300 ㎍/l showed the highest germination percentage and improved plant growth. The expression levels of antioxidant-related genes such as superoxide dismutase, peroxidase, and proline synthesis were associated with the germination of low temperature-treated seeds. Overall, this study demonstrated that AFP I may potentially function as a cold-protective agent for the germination of low temperature-treated seeds.

Effects of Low and Alternated Temperature Treatments on Quality of Oak Mushroom in Sawdust Culture (표고 톱밥 재배에서 저온 및 변온 처리가 표고 품질에 미치는 영향)

  • Park, Kyoung-Sub;Son, Jung-Eek;Yoon, Gap-Hee
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.43-44
    • /
    • 2001
  • Recently the sawdust culture of Lentinus edodes(Berk.) has been gradually extended replacing the log cultivation in Korea. It is indeed able to reduce the use of log and cultivation period in controlled facilities, but is not yet able to produce the high-quality mushroom. The objectives of this study were to examine the effects of low and alternated temperature treatments during the fruiting period on the quality of oak mushroom. At low temperature treatments of 1$^{\circ}C$ and 10$^{\circ}C$, the crack, lightness, hardness, and other characteristics for the high-quality oak mushroom were not improved. However, the crack, brightness, and hardness of cap were increased at alternated temperatures of 5-10$^{\circ}C$ than the other temperature treatments. In conclusion, the alternated temperature treatments were more effective than the low temperature treatment for improving the indices of high-quality oak mushroom such as the crack, brightness and hardness of cap.

  • PDF

Analysis of O-J-I-P Transients from Four Subtropical Plant Species for Screening of Stress Indicators under Low Temperature (저온스트레스 지표 선발을 위한 아열대성 식물 4종의 O-J-I-P곡선 분석)

  • Oh Soonja;Koh Seok Chan
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.389-395
    • /
    • 2005
  • The changes of O-J-I-P transients were investigated using leaves of four subtropical plant species (Crinum asiaticum var. japonicum, Osmanthus insularis, Chloranthus glaber and Asplenium antiquum) under the natural conditions in winter, in order to select the stress indicators for diagnosing physiological states of plants under low temperature. In the O-J-I-P transients of these species, the fluorescence intensity was found to be higher in O-step and lower in P-step in winter than in summer. Particularly, the fluorescence intensity of the P-step in Crinum asiaticum var. japonicum was lower than those of other three plant species, indicating that Crinum asiaticum var. japonicum is the most sensitive to low temperature. Of the chlorophyll fluorescence parameters derived from O-J-I-P transients of four subtropical plants, Fm, Fv/Fo, ABS/CS, TRo/CS, $\phi_{po}$ and $\phi_{po}/(1-\phi_{po})$ decreased significantly with the increase of Fo, Sm, N, EToICS, ETo/RC and $\psi_o/(1-\psi_o)$ depending on temperature drop in winter. Therefore, these parameters could be used as indicators for estimating low temperature stress and diagnosing physiological states of plants under the natural conditions in winter.

Characteristics of Growth and Physiological Changes during Cold Treatment in Dormant Hanabusaya asiatica

  • Lee, Ho-Sun;Yoo, Dong-Lim;Ryu, Seung-Yeol;Sung, Jeong-Suk;Baek, Hyung-Jin;Lee, Young-Yi;Lee, Sok-Young
    • Korean Journal of Plant Resources
    • /
    • v.24 no.3
    • /
    • pp.292-297
    • /
    • 2011
  • This experiment was carried out to investigate the appropriate chilling requirements for breaking dormancy by treating the dormant plant of Hanabusaya asiatica with low temperature ($4^{\circ}C$) for different time periods. The rates of sprouting and flowering were higher with longer treatment periods at low temperature. In addition, the growth and flowering of the plant were better when it was potted after treatment at a low temperature for 90 days. The abscisic acid levels and polyphenoloxidase activity of the dormant plant increased during the low temperature treatment, reached a climax 90 days and decreased thereafter. The catalase activity was the lowest after the low temperature treatment for 90 days and increased subsequently. The peroxidase activity increased and showed a sharp rise after the low temperature treatment for more than 90 days. Considering the physiological activities of the enzymes, the changes in the abscisic acid levels, and the characteristics of growth and flowering after sprouting of the plant, the appropriate cold periods required for breaking dormancy could be 90 days.

Statistical Analyses of the Flowering Dates of Cherry Blossom and the Peak Dates of Maple Leaves in South Korea Using ASOS and MODIS Data

  • Kim, Geunah;Kang, Jonggu;Youn, Youjeong;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.57-72
    • /
    • 2022
  • In this paper, we aimed to examine the flowering dates of cherry blossom and the peak dates of maple leaves in South Korea, by the combination of temperature observation data from ASOS (Automated Surface Observing System) and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate Resolution Imaging Spectroradiometer). The more recent years, the faster the flowering dates and the slower the peak dates. This is because of the impacts of climate change with the increase of air temperature in South Korea. By reflecting the climate change, our statistical models could reasonably predict the plant phenology with the CC (Correlation Coefficient) of 0.870 and the MAE (Mean Absolute Error) of 3.3 days for the flowering dates of cherry blossom, and the CC of 0.805 and the MAE of 3.8 for the peak dates of maple leaves. We could suppose a linear relationship between the plant phenology DOY (day of year) and the environmental factors like temperature and NDVI, which should be inspected in more detail. We found that the flowering date of cherry blossom was closely related to the monthly mean temperature of February and March, and the peak date of maple leaves was much associated with the accumulated temperature. Amore sophisticated future work will be required to examine the plant phenology using higher-resolution satellite images and additional meteorological variables like the diurnal temperature range sensitive to plant phenology. Using meteorological grid can help produce the spatially continuous raster maps for plant phenology.

method of Using Hydrolysis to Increase Paclitaxel Yield from plant Cell Culture (가수분해방법에 의한 식물세포배양여액으로부터 Paclitaxel 수율증가)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.402-404
    • /
    • 2000
  • This work is method that uses a hydrolysis for increasing yield of paclitaxel in plant cell cultures. The best pH is 3.0 to obtain a maximum yield at fixed reaction temperature and time t pH 3.0 reaction temperature 80$^{\circ}C$ and reaction time 8 hr give the highest yield which is three time of control. This is very simple and efficient method to increase paclitaxel yield in plant cell cultures.

  • PDF

A Study on Plant Phenological Trends in South Korea (우리나라 식물계절 시기의 변화 경향에 관한 연구)

  • Lee, Kyoung-Mi;Kwon, Won-Tae;Lee, Seung-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.3
    • /
    • pp.337-350
    • /
    • 2009
  • The phenological change of plants is an indication of local and regional climate change. An increase in temperature due to global warming is manifest in the change of phytophenological events. In this study, trends in the plant phenology and its correlation with air temperature in South Korea were examined using observational data for 18 phenological phases. The spring phenological phases, such as sprouting and flowering, occurred earlier (from 0.7 to 2.7 days per 10-year) during 1945 ${\sim}$2007. while the autumn phases, such as full autumn tinting, moved later (from 3.7 to 4.2 days per 10-year) during 1989 ${\sim}$2007. The correlation between the plant phenology in spring with the air temperature from February to March is relatively high. The warming in the early spring (February March) by $1^{\circ}C$. causes an advance in the spring plant phenology of 3.8 days. The plant phenology in autumn also correlates with the average temperature in October. The autumn plant phenology for a $1^{\circ}C$ increase in October temperature occurs about 3.1 days later.

  • PDF

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

Optical Sensing for Evaluating the Severity of Disease Caused by Cladosporium sp. in Barley under Warmer Conditions

  • Oh, Dohyeok;Ryu, Jae-Hyun;Oh, Sehee;Jeong, Hoejeong;Park, Jisung;Jeong, Rae-Dong;Kim, Wonsik;Cho, Jaeil
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.236-240
    • /
    • 2018
  • Crop yield is critically related to the physiological responses and disease resistance of the crop, which could be strongly affected by high temperature conditions. We observed the changes in the growth of barley under higher than ambient air-temperature conditions using a temperature gradient field chamber (TGFC) during winter and spring. Before the stem extension stage of barley growth, Cladosporium sp. spontaneously appeared in the TGFC. The severity of disease became serious under warmer temperature conditions. Further, the stomata closed as the severity of the disease increased; however, stomatal conductance at the initial stage of disease was higher than that of the normal leaves. This was likely due to the Iwanov effect, which explains that stressed plants rapidly and transiently open their stomata before longer-term closure. In this study, we tested three optical methods: soil-plant analysis development (SPAD) chlorophyll index, photochemical reflectance index (PRI), and maximum quantum yield (Fv/Fm). These rapid evaluation methods have not been used in studies focusing on disease stress, although some studies have used these methods to monitor other stresses. These three indicative parameters revealed that diseased barley exhibited lower values of these parameters than normal, and with the increase in disease severity, these values declined further. Our results will be useful in efficient monitoring and evaluation of crop diseases under future warming conditions.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF