• Title/Summary/Keyword: Plant temperature

Search Result 4,495, Processing Time 0.029 seconds

Plant co-occurrence patterns and soil environments associated with three dominant plants in the Arctic

  • Deokjoo Son
    • Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The positive effects of Arctic plants on the soil environment and plant-species co-occurrence patterns are known to be particularly important in physically harsh environments. Although three dominant plants (Cassiope tetragona, Dryas octopetala, and Silene acaulis) are abundant in the Arctic ecosystem at Ny-Ålesund, Svalbard, few studies have examined their occurrence patterns with other species and their buffering effect on soil-temperature and soil-moisture fluctuation. To quantify the plant-species co-occurrence patterns and their positive effects on soil environments, I surveyed the vegetation cover, analyzed the soil-chemical properties (total carbon, total nitrogen, pH, and soil organic matter) from 101 open plots, and measured the daily soil-temperature and soil-moisture content under three dominant plant patches and bare soil. Results: The Cassiope tetragona and Dryas octopetala communities increased the soil-temperature stability; however, the three dominant plant communities did not significantly affect the soil-moisture stability. Non-metric multidimensional scaling separated the sampling sites into three groups based on the different vegetation compositions. The three dominant plants occurred randomly with other species; however, the vegetation composition of two positive co-occurring species pairs (Oxyria digyna-Cerastium acrticum and Luzula confusa-Salix polaris) was examined. The plant species richness did not significantly differ in the three plant communities. Conclusions: The three plant communities showed distinctive vegetation compositions; however, the three dominant plants were randomly and widely distributed throughout the study sites. Although the facilitative effects of the three Arctic plants on increases in the soil-moisture fluctuation and richness were not quantified, this research enables a deeper understanding of plant co-occurrence patterns in Arctic ecosystems and thereby contributes to predicting the shift in vegetation composition and coexistence in response to climate warming. This research highlights the need to better understand plant-plant interactions within tundra communities.

An Analytical Study on the Optimal Set-point of the Hybrid Plant (복합열원설비 운전온도 최적 설정에 관한 해석적 연구)

  • Jeon, Jong-Ug;Lee, Sun-Il;Lee, Tae-Won;Kim, Yong-Ki;Hong, Dae-Hie;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.352-357
    • /
    • 2007
  • The objective of this study is to find the optimal set-point of a hybrid Plant, which is combined by renewable energy plant of the GSHP(Ground Source Heat Pump) and the conventional plant(chiller, boiler). The work presented in this study was carried out by using the EnergyPlus(Version 2.0). In order to validate the simulation model, field data were measured from a building. The GSHP was used as a base plant and the conventional plant as the assistant plant. Various temperatures were controlled (zone summer set-point, zone winter set-point, chilled water temperature, hot water temperature) to find the optimal set-point temperature of the system. The influence of the various set-points were analyzed seasonally.

  • PDF

Brassinosteroids-mediated regulation of ABI3 is involved in high-temperature induced early flowering in plants

  • Hong, Jeongeui;Sung, Jwakyung;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • The interplay of plant hormones is one of the essential mechanisms for plant growth and development. A recent study reported that Brassinosteroids (BR) and ABSCISIC ACID (ABA) interact antagonistically in early seedling developments through the BR-mediated epigenetic repression of ABSCISIC ACID-INSENSITIVE 3 (ABI3). However, the other physiological roles of the BR-mediated regulation of ABI3 and ABA responses beyond early seedling developments remain largely unknown. Here, we showed that the activation of BR signaling by high temperatures promotes flowering time through the suppression of ABI3 expressions. Elevated ambient temperature induced early flowering in wild type Col-0 plants, but not in BR-defective bri1-116 mutant plants. Conversely, a hyper BR biosynthetic dwf4-D mutant displayed more sensitive thermomorphic long shoot elongation and early flowering. Both expression patterns and physiological responses supported the biological roles of ABI3 in the regulation of floral transition and reproduction under high temperature conditions. Finally, we confirmed that the lowered expressions of the transcript and protein levels of ABI3 brought on by elevated temperature were correlated with warmth-induced early flowering phenotypes. In conclusion, our data suggest that the BR- and warmth-mediated regulation of ABI3 are important in thermomorphic reproductive phase transitions in plants.

The Effect of Plants and Waterscape Facilities on the Thermal Indoor Environment (실내에서 식물과 수경시설이 온열환경에 미치는 영향)

  • 정연승;박인환
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.19-28
    • /
    • 1999
  • This survey is to investigate the effect of plants and waterscape facilities on the thermal indoor environment and to provide basic data for proper plant cultivation to enhance indoor landscape. The survey of the measure of comfort on the indoor environment for the residents of Taegu shows that the measure of comfort on the thermal-environment, which consist of temperature and humidity, has more negative responses than the measure on lighting . are . sound environment, which consists of air freshness, lighting condition and sound environment. The experiments on the effect of the amount of leaves and the distance of plants on the indoor thermal-environment are made. The experimental results illustrate that, as the capacity of a plant becomes greater and the distance from the plant shorter, the falling effect of temperature and the rising effect of humidity on the top of the plant are taken higher than on the side of the plant. When the same amount of leaves is set up, the distance range of the rising effect of humidity becomes wider than that of the falling effect of temperature. The investigation of the effect of waterscape facilities on the indoor thermal-environment shows that temperature and humidity of the space with installed waterscape facilities are lower and higher than without facilities, respectively.

  • PDF

Effect of high temperature on mineral uptake, Soluble carbohydrates partitioning and cucumber yield

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.291-298
    • /
    • 2014
  • Plastic film houses are directly associated with increases in plant growth and yield of vegetable crops through a year round cultivation, however, at the same time temperature stresses are one of fates which are difficult to avoid during crop growth. The objective of this study was to examine the translocation and distribution of minerals (N, P, K) and carbohydrates as well as seasonal fluctuation of mineral uptake and carbohydrate production in cucumber plant grown under moderately high temperature. The temperature treatments consisted of 2-layers film houses (optimal temp.) and 3-layers (high temp.). Shoot growth of cucumber plants were linearly increased until 14 weeks after transplanting (WAT) without any significant difference between both temperatures, and the slowdown was observed from 16 WAT. The level of soluble sugar and starch was slightly greater in optimal temperature compared to the high. Cumulative accumulation of soluble sugar was significantly different before and after 12 WAT in both treatments, whereas starch level represented a constant increase. Monthly production of soluble sugar reached the peak between 12 to 16 WAT, and starch peaked between 4 to 8 WAT and 12 to 16 WAT. Total uptake of N, P and K in optimal and high temperature conditions was $18.4g\;plant^{-1}$ and 17.6 for N, 4.7 and 5.1 for P, and 37.7 and 36.2 for K, respectively, and the pattern of monthly N uptake between optimal and high temperatures was greater in early growth stage, whereas was greater in mid growth stage in both P and K. Thus, this study suggests that moderately high temperature influences much greater to photosynthesis and carbohydrate production than plant biomass and mineral uptake. On the basis of the present result, it is required to indentify analysis of respiration rates from plant and soil by constantly increasing temperature conditions and field studies where elevated temperatures are monitored and manipulated.

Factors Affecting Sporulation, Germination, and Appressoria Formation of Epicoccosorus nematosporus as a Mycoherbicide Under Controlled Environments

  • Hong, Yeon-Kyu;Cho, Jae-Min;Lee, Bong-Choon;Uhm, Jae-Youl;Kim, Soon-Chul
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.50-53
    • /
    • 2002
  • To develop Epicoccosorus nematosporus as a mycoherbicide of Eleocharis kuroguwai, the optimum temperature and humidity for sporulation of the pathogen were studied. Conidial production was most abundant at $28^{\circ}C$ with RH 60%, which yielded 661 mg in 9 cm Petri dish. Light intensity of 3,000 up to 7,500 lux was effective in stimulating conidial production of E. nematosporus on oatmeal agar, Light intensity affected sporulation more significantly than temperature. In the pot test, at least 12 h of dew period at $20^{\circ}C$ and $25^{\circ}C$ was required to achieve satisfactory conidial germination and appressorial formation. Few were killed at 8 h of dew period regardless of temperature. Sixteen hours of a single dew treatment immediately after inoculation killed more plants than did two or three repetitive dew treatments of 8-12 h.

A Study On the Design Of Fuzzy Controller for the Steam Temperature Process in the Coal Fired Power Plant

  • Shin, Sang-Doo;Kim, Yi-Gon;Lee, Bong-Kuk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.350-353
    • /
    • 2003
  • In this paper, we proposed the method to design fuzzy controller using the experience of the operating expert and experimental numeric data for the robust control about the noise and disturbance instead of the traditional PID controller for the main steam temperature control of the thermal power plant. The temperature of main steam temperature process has to be controlled uniformly for the stable electric power output. The process has the problem of the hunting for the cases of various disturbances. In that case, the manual action of the operator happened to be introduced in some cases. We adopted the TSK (Takagi-Sugeno-Kang) model as the fuzzy controller and designed the fuzzy rules using the informations extracted directly from the real plant and various operating condition to solve the above problems and to apply practically. We implemented the real fuzzy controller as the Function Block module in the DCS(Distributed Control System) and evaluated the feasibility through the experiment81 results of the simulation.

  • PDF

Efficiency for extracting icariin from Epimedium koreanum Nakai by temperature and solvent variations

  • Baek, Hum-Young;Lee, Young-Sang
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.221-226
    • /
    • 2003
  • To improve industrial scale extraction method for extraction of icariin from Epimedium koreanum Nakai, the yields under different extracting conditions such as solvent, temperature, duration and solvent to plant material weight ratio were compared. Regarding extracting solution, highest extracts and icariin yield could be achieved when 10% EtOH was used. In case of plant material to extracting solvent ratio, no significant differences could be observed from 1/10 to 1/50, indicating 1/10 was the most efficient. Extracting temperature significantly affected extracts and icariin yields in that 9$0^{\circ}C$ increased the collected extracts and icariin contents up to 29.6% and 0.76%, respectively, compared to 27.2%, 0.33% at 7$0^{\circ}C$. The yield of extracts was less dependent upon extracting temperature compared to icariin yield. Regarding extraction time, 4 hr and 6 hr resulted in high extracts and icariin yield, respectively. We found extracting Epimedium koreanum Nakai in 10 times volume of 10% EtOH for 4 and 6 hr at 9$0^{\circ}C$ seem to be relatively efficient methods for extracts and icariin, respectively.

  • PDF

Effect of Active Nutrient Uptake on Heading Under Low Temperature in Rice

  • Hwang, Woon-Ha;Kang, Jea Ran;Baek, Jung-Sun;An, Sung-Hyun;Jeong, Jae-Heok;Jeong, Han-Yong;Lee, Hyen-Seok;Yun, Jong-Tak;Lee, Gun-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.

Canola Plant Growth Promotion by a Selected Plant Growth Promoting-Rhizobacteria, Burkholderia pyrrocinia Strain 13-1 in the Cold Condition (고활성 근권생육촉진균주 Burkholderia pyrrocinia 13-1에 의한 저온조건에서의 유채생육촉진)

  • Lee, Jae-Eun;Cho, Sang-Min;Cho, Young-Eun;Park, Kyung-Seok
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.262-266
    • /
    • 2009
  • Plant growth-promoting rhizobacteria (PGPR) are beneficial native soil bacteria that colonize plant roots and result in increased plant growth. The objective of this study was to determine the plant growth promotion in canola plants by selected PGPR strain 13-1 under low temperature condition. The seed treatment of strain 13-1 was enhanced plant height and root elongation on canola plant at low temperature condition. This result determined that a selected strain of PGPR can enhance plant growth and root propagation under extremely low temperature conditions. Thus, this PGPR strain extends their role on plant growth promotion on canola until low temperature condition for practical applications.