• Title/Summary/Keyword: Plant nutrients

Search Result 755, Processing Time 0.15 seconds

Effects of commercial soils on germination, early growth, and chlorophyll content of Aspilia africana, a medicinal plant

  • Okello, Denis;Komakech, Richard;Kim, Yong-Goo;Rahmat, Endang;Chung, Yuseong;Omujal, Francis;Kang, Youngmin
    • Journal of Plant Biotechnology
    • /
    • v.48 no.2
    • /
    • pp.115-122
    • /
    • 2021
  • Aspilia africana (Pers) C.D.Adams, a plant used for centuries in many African countries to treat diseases such as osteoporosis, malaria, tuberculosis, and diabetes, is of great pharmaceutical interest, yet there is limited scientific literature on its germination and growth. This research paper describes the effects of different commercial soils on the germination, growth, and chlorophyll content of A. africana. The germination parameters assessed included final germination percentage (FGP), mean germination time (MGT), and germination index (GI). Shoot length, leaf number, and fresh and dry weights were some of the parameters used to assess A. africana growth. The FGP was low and did not vary significantly; the MGT was 7 ~ 10 days; and the GI was significantly higher in PPS soil at 4.61 ± 0.332 days. Aspilia africana plants in HS:PPS soil showed the best overall growth, producing the highest mean leaf number (18.00 ± 1.129), longest mean shoot length (202.43 ± 13.451 mm), and highest mean fresh and dry weights (7.08 ± 1.061 g and 0.629 ± 0.112 g, respectively). The highest chlorophyll content in leaves of A. africana under HS:PPS conditions suggested a higher photosynthetic potential of plants in this soil. The best growth performance of A. africana in the HS:PPS soil could be attributed to a higher amount of certain mineral nutrients such as nitrogen, potassium, and phosphorus in the HS:PPS soil compared to the other soil categories. It is unclear why the FGP of A. africana was low and we recommend an exclusive study to investigate this further.

A comparative analysis of rumen pH, milk production characteristics, and blood metabolites of Holstein cattle fed different forage levels for the establishment of objective indicators of the animal welfare certification standard

  • Baek, Dong Jin;Kwon, Hyoun Chul;Mun, Ah Lyum;Lim, Joo Ri;Park, Sung Won;Han, Jin Soo
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.147-152
    • /
    • 2022
  • Objective: This study was conducted to obtain an objective index that can be quantified and used for establishing an animal welfare certification standard in Korea. For this purpose rumen pH, ruminating time, milk yield, milk quality, and blood components of cows reared in farms feeding high forage level (90%) and farms feeding low forage level (40%) were compared. Methods: Data on rumen pH, rumination time, milk yield, milk fat ratio, milk protein ratio, and blood metabolism were collected from 12 heads from a welfare farm (forage rate 88.5%) and 13 heads from a conventional farm (forage rate 34.5%) for three days in October 2019. Results: The rumination time was longer in cattle on the welfare farm than on the conventional farm (p<0.01), but ruminal pH fluctuation was greater in the cattle on conventional farm than the welfare farm (p<0.01). Conventional farms with a high ratio of concentrated feed were higher in average daily milk yield than welfare farms, but milk fat and milk production efficiency (milk fat and milk protein corrected milk/total digestible nutrients) was higher in cattle on welfare farms. Blood test results showed a normal range for both farm types, but concentrations of total cholesterol and non-esterified fatty acid were significantly higher in cows from conventional farms with a high milk yield (p<0.01). Conclusion: The results of this study confirmed that cows on the animal welfare farm with a high percentage of grass feed had higher milk production efficiency with healthier rumen pH and blood metabolism parameters compared to those on the conventional farm.

Antioxidant and Immunomodulatory Effects of Laminaria japonica Water Extract (다시마 추출물의 항산화와 염증 조절 효과)

  • Cui, Jiamei;Kim, Eunyoung;Zhang, Guiguo;Lee, Yunkyoung
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.5
    • /
    • pp.438-445
    • /
    • 2022
  • Laminaria japonica is a type of brown algae widely consumed in Asian countries and contains many essential nutrients and exhibits anti-obesity, antioxidant, and anti-inflammatory effects. In this study, the antioxidant and immunomodulatory effects of a Laminaria japonica water extract (LJE) were investigated using an in vitro model. Mean total polyphenol content of LJE was 2.16±0.11 ㎍ GAE/mg, and LJE dose-dependently inhibited ABTS radical activity but did not scavenge DPPH radicals. In addition, LJE enhanced nitric oxide (NO) production and upregulated the mRNA expressions of proinflammatory cytokines (i.e., tumor necrosis factor-α and interleukin-6) in RAW 264.7 cells. On the other hand, LJE inhibited NO production and downregulated proinflammatory cytokine mRNA levels in endotoxin-stimulated RAW 264.7 cells. Thus, our data show that LJE has moderate antioxidant activity and biphasic immunomodulatory effects on RAW 264.7 cells. In summary, the study indicates that LJE has potential therapeutic use as a novel biphasic immuno-modulator.

Effect of Nutritional Difference between Soy Milk and Mung Milk on Fermentation

  • Gyeongseon An;Yeonghun Cho;Jungmin Ha
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.301-301
    • /
    • 2022
  • Dairy products are important diet source for human because of their balanced essential nutrients along with various vitamins and minerals. However, lactose in milk can result in diarrhea to some consumers with lactose intolerance. Soy milk has no lactose and is suitable as a substitute for diary milk in accordance with recent trend of replacing animal food with vegetable food. However, polysaccharides in soy milks are difficult for humans to digest, leading to flatulence. These polysaccharides can be decomposed into monosaccharides by lactic acid bacteria, and fermentation can improve food quality. Because mungbean has higher carbohydrate content than soybean, mung milk can be easily fermented than soy milk, resulting in vege yogurt with higher contents of lactic acid. In this study, fermentation characteristics of vege yogurt were analyzed with different ratio of soy milk and mung milk (0%, 25%, 50%, 75%, 100% and 0%+sucrose) and different fermentation time (0, 8, and 16 hours). In general, pH decreased as fermentation time increased. Overall, pH significantly decreased when the mung milk content in yogurt increased. All samples showed higher titratable acidity after fermentation and soy yogurt (mungbean 0%, 16 hours) with sucrose showed the highest value (6.825%). As fermentation time increase, viscosity increased. In 8 and 16 hours, mung milk yogurt (mungbean 100%) showed the lowest viscosity while soy milk yogurt (soybean 100%) with no sucrose showed the highest viscosity after 16 hours of fermentation. The contents of crude protein, crude fat and ash were measured for nutritional analysis. Soy milk (mungbean 0%, 0 hours) had the values of crude protein 2.9g, crude fat 1.8g, and ash 0.3g, and mung milk (mungbean 100%, 0 hours), showed the values of crude protein 1.7g, crude fat 0g, and ash 0.3g. To analyze the effect of the differences in the contents of nutrition between soy milk and mung milk on fermentation, the changes in sugar contents, and antioxidant capacity will be conducted depending on fermentation time. Our results will provide the information in researching plant beverages.

  • PDF

Research Trends on Plant Associated Beneficial Bacteria as Biofertilizers for Sustainable Agriculture: An Overview (지속농업을 위한 생물비료로서의 유용세균관련 식물검정 연구 개관)

  • Sa, Tongmin;Chauhan, Puneet Singh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.20-28
    • /
    • 2009
  • The sustainability of conventional agriculture which is characterized by input dependent and ecologically simplified food production system is vague. Chemicals and present practices used in agriculture are not only costly but also have widespread implications on human and animal health, food quality and safety and environmental quality. Thus there is a need for alternative farming practices to sustain food production for the escalating population and conserve environment for future generations. The present research scenario in the area of plant microbe interactions for maintaining sustainable agriculture suggests that the level of internal regulation in agro-ecosystems is largely dependent on the level of plant and microbial diversity present in the soil. In agro-ecosystems, biodiversity performs a variety of ecological services beyond the production of food, including recycling of nutrients, regulation of microclimate and local hydrological processes, suppression of undesirable organisms and detoxification of noxious chemicals. Controlling the soil microflora to enhance the predominance of beneficial and effective microorganisms can help improve and maintain soil chemical and physical properties. The role of beneficial soil microorganisms in sustainable productivity has been well construed. Some plant bacteria referred to as plant growth-promoting rhizobacteria (PGPR) can contribute to improve plant growth, nutrient uptake and microbial diversity when inoculated to plants. Term PGPR was initially used to describe strains of naturally occurring non-symbiotic soil bacteria have the ability to colonize plant roots and stimulate plant growth PGPR activity has been reported in strains belonging to several other genera, such as Azotobacter, Azospirillum, Arthrobacter Bacillus, Burkhokderia, Methylobacterium, and Pseudomonas etc. PGPR stimulate plant growth directly either by synthesizing hormones such as indole acetic acid or by promoting nutrition, for example, by phosphate solubilization or more generally by accelerating mineralization processes. They can also stimulate growth indirectly, acting as biocontrol agents by protecting the plant against soil borne fungal pathogens or deleterious bacteria. Present review focuses on some recent developments to evolve strategies for better biotechnological exploitation of PGPR's.

The Effects of the Amount of Applied Fertilizer on the Mineral Nutrient Uptake and Oil Quality in Rapes (施肥量이 油菜 無機養分 吸收 및 油質에 미치는 影響)

  • Moon, Yong Sick;Chae Kyu Lim
    • The Korean Journal of Ecology
    • /
    • v.7 no.3
    • /
    • pp.170-176
    • /
    • 1983
  • The results obtained from the experiments conducted to investigate Cruciferae plants in rape dependent on the amount of applied fertilizer in aspects of mineral nutrient uptake and on the effects of the composition of oil quality are as follows: Absorption of mineral nutrients in the respective pars of the plant body was high in nitorgen in the order of leaf and stem

  • PDF

Nutrient Amendments Influence Endophytic Colonization of Rice by Serratia marcescens IRBG500 and Herbaspirillum seropedicae Z67

  • Gyaneshwar, P.;Reddy, Pallavolu M.;Ladha, Jagdish K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.694-699
    • /
    • 2000
  • Serratia marcescens IRBG500 and Herbaspirillum seropedicae Z67 grow endophytically in rice. The ability of these bacteria to colonize rice grown under increased nutrient availability was assessed in variety IR72 using strains marked with transposon-based gusA. The endophytic colonization was monitored via bacterial enumeration and histochemical visualization of GUS expression of bacteria in plant tissues. Rhizoplane and endophytic colonization by both bacteria was significantly inhibited in the rice plants grown in the presence of 10 mM $NH_4Cl$. In contrast, the addition of 10 mM $KNO_3$ showed no adverse effect on colonization. Increasing the concentration of $Ca^{2+}$ to 5 mM significantly reduced endophytic colonization by both bacterial strains, whereas the addition of 0.5 mM $Fe^{2+}$ substantially lowered the colonization of roots by S. marcescens IRBG500 but showed no effect on colonization by H. seropedicae Z67. Taken together, these finding suggest that, like in legume-rhizobial symbiosis as well as plant-pathogen interactions, nutrient status, particularly $NH_4^+$ and $Ca^{2+}$ concentrations in the surrounding medium, plays an important role in the regulation of endophytic infection and colonization processes in rice.

  • PDF

Plant Toxins and Detoxification Methods to Improve Feed Quality of Tropical Seeds - Review -

  • Makkar, H.P.S.;Becker, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.467-480
    • /
    • 1999
  • Many antinutritional and toxic factors abound in tropical seeds, which are also generally rich in nutrients and therefore more prone to attack from herbivores. Antinutritional and toxic factors are considered to defend seeds against environmental vagaries and thus help to protect them. These factors though good for the plant, cause deleterious effects or are even toxic to animals and man. The conventional seeds cultivated for oil or non-oil purposes, and general aspects of antinutritional factors are not presented here as these have already been discussed widely by many workers. Deficits in conventional protein and energy sources in the tropics have stimulated a quest for alternative feeds both for animals and humans. This article attempts to highlight two new oilseed crops, Jatropha curcas and Moringa oleifera, and in addition deals with some under-utilized seeds with potential as animal feed. Most of these seed plants are adapted to various marginal growing conditions in the tropics and can help to mitigate the prevailing deficit in protein and energy sources. Antinutritional and toxic factors in seed or seed meal, various approaches to detoxify seed meal, and future research and development priorities for their exploitation as animal feeds are presented.

Impacts of Planting Density on Nutrients Uptake by System of Rice Intensification under No-tillage Paddy in Korea

  • Meas, Vannak;Shon, Daniel;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • The System of Rice Intensification (SRI) is a new concept of increasing the yield of rice produced in farming. Therefore, we investigated the impacts of planting density on nutrient uptake as affected by SRI under no-till cropping system. The field was prepared as a randomized complete block design with three treatments: $10{\times}10$ cm, $20{\times}20$ cm and $30{\times}30$ cm planting densities. The root dry mass was significantly increased in the wider planting densities (p<0.05%). The highest grain yield was obtained in $20{\times}20$ cm planting density plot (p<0.05%) due to higher plant density per unit area and spikelets number per panicle. The total uptake amounts by rice plant were significantly higher in $20{\times}$20 cm planting density plot as 94.8 kg $ha^{-1}$ for T-N and 29.9 kg $ha^{-1}$ for P than other planting densities plots, but K and Mg uptake were significantly higher in $10{\times}10$ cm planting density plot (p<0.05%). In this study, our findings suggest that SRI should be considered as a new practice for the rice productivity.

Phytochemical and Antioxidant Properties of Korean Wheat Sprouts

  • Park, Jae-Jung;Park, Yong-Sung;Dhungana, Sanjeev Kumar;Kim, Il-Doo;Shin, Dong-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.3
    • /
    • pp.170-182
    • /
    • 2020
  • Wheat is an economically important cereal worldwide and is a staple food in many countries. Extensive researches have been performed on the nutritional value and antioxidant potentials of sprouts of legumes like soybean, however very limited studies have been carried out on the sprouts of Korean wheat cultivar. The objective of this study was to investigate the phytochemical and antioxidant potentials of Korean wheat sprouts. The sprouts were grown for 10 (WS-10), 20 (WS-20), and 30 (WS-30) days at room temperature. The pH, color, chlorophyll, free amino acid, 1,1-diphenly-2-picrylhydrazyl (DPPH), and total polyphenol content of the sprout samples were determined. The pH of sprouts was increased in the older sprouts. Color values were significantly influenced by the age of sprouts. The chlorophyll content was lowest but the total free amino acid content was highest in WS-30. On the other hand, the DPPH free radical scavenging potential and total polyphenol content were lower in WS-30. The results suggested that Korean wheat sprouts could be a potential source of nutrients and natural antioxidants.