• 제목/요약/키워드: Plant network

검색결과 909건 처리시간 0.031초

신경망 예측기를 이용한 인버티드 펜듈럼의 제어 (Control of an Inverted Pendulum Using Neural Network Predictor)

  • 문형석;이규열;강영호;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1031-1033
    • /
    • 1996
  • Now is an automation age. Therefore it is required that machine can do work which was done by men. Artificial Neural Network was developed by the necessity of this purpose. This paper shows a Predictive Control with a Neural Network. The Neural Network learns an Inverted Pendulum in various situations. Then, it has a power to predict the next state after accept the current state. And the Neural Network directs the Bang-Bang Controller to give input to a plant. It seems like that a human expert looks the state of a plant and then controls the plant. It is used a Feedforward Neural Network and shown control state according to the learning. We could get a satisfactory results after complete learning.

  • PDF

PICNET-NP 통신망의 신뢰성 검증을 위한 시뮬레이션 구현 (A realization of simulator for reliability verification of the communication network PICNET-NP)

  • 이성우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2212-2215
    • /
    • 2002
  • This dissertation suggests and implements a middle level network which is called PICNET-NP (Plant Implementation and Control Network for Nuclear Power Plant). PICNET-NP is based partly on IEEE 802.4 token-passing bus access method and partly on IEEE 802.3 physical layer. For this purpose a new interface a physical layer service translator, is introduced. A control network using this method is implemented and applied to a distributed real-time system. To verify the performance of proposed protocol experimental were carried out, and the following results are obtained. 1) proper initialization of the protocol. 2) normal receiving and transmission of data. 3) proper switching of transmission media in case of a fault condition on the one of transmission media. The proposed protocol exhibits the excellent performance in the experimental system. From the test results in the experimental system, the proposed protocol, PICNET-NP, can be used for the upgrading of a nuclear power plant and the distributed control system in the next generation of nuclear power plant.

  • PDF

Networked Control System Design Accounting for Time-Delays with Application to Inverted Pendulum

  • Park, Byung-In;Yoo, Ho-Jun;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1470-1473
    • /
    • 2003
  • In this paper the networked control systems (NCS) problem is discussed where plants and controllers are distributed and interconnected by a common network. NCS is designed with LQ regulator and applied to an inverted pendulum accounting for the multiple time delays. We are to deals with a networked control system with a single controller, multiple sensors and multiple actuators. Since these parts are distributed, they are interconnected by communication networks. An NCS with LQ regulator is designed and applied to an inverted pendulum as a benchmark plant to check its performance under time delays induced by the network. Network induced delays are composed of two parts. One is the delay from controller to plant, and another is from plant to controller. They are assumed to be constant in this paper, and the plant and controller are discretized. To apply the LQ regulator the NCS model is transformed to a standard model with delayed states as state variable. And real network induced delay is measuring in TCP/IP network assuming that two delays are constant.

  • PDF

원전 극한 환경적용을 위한 필드버스 통신망 요건 (Fieldbus Communication Network Requirements for Application of Harsh Environments of Nuclear Power Plant)

  • 조재완;이준구;허섭;구인수;홍석붕
    • 한국IT서비스학회지
    • /
    • 제8권2호
    • /
    • pp.147-156
    • /
    • 2009
  • As the result of the rapid development of IT technology, an on-line diagnostic system using the field bus communication network coupled with a smart sensor module will be widely used at the nuclear power plant in the near future. The smart sensor system is very useful for the prompt understanding of abnormal state of the key equipments installed in the nuclear power plant. In this paper, it is assumed that a smart sensor system based on the fieldbus communication network for the surveillance and diagnostics of safety-critical equipments will be installed in the harsh-environment of the nuclear power plant. It means that the key components of fieldbus communication system including microprocessor, FPGA, and ASIC devices, are to be installed in the RPV (reactor pressure vessel) and the RCS (reactor coolant system) area, which is the area of a high dose-rate gamma irradiation fields. Gamma radiation constraints for the DBA (design basis accident) qualification of the RTD sensor installed in the harsh environment of nuclear power plant, are typically on the order of 4 kGy/h. In order to use a field bus communication network as an ad-hoc diagnostics sensor network in the vicinity of the RCS pump area of the nuclear power plant, the robust survivability of IT-based micro-electronic components in such intense gamma-radiation fields therefore should be verified. An intelligent CCD camera system, which are composed of advanced micro-electronics devices based on IT technology, have been gamma irradiated at the dose rate of about 4.2kGy/h during an hour UP to a total dose of 4kGy. The degradation performance of the gamma irradiated CCD camera system is explained.

자기조직형 Fuzzy Neural Network에 의한 응집제 투입률 자동제어 (Automatic Control of Coagulant Dosing Rate Using Self-Organizing Fuzzy Neural Network)

  • 오석영;변두균
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1100-1106
    • /
    • 2004
  • In this report, a self-organizing fuzzy neural network is proposed to control chemical feeding, which is one of the most important problems in water treatment process. In the case of the learning according to raw water quality, the self-organizing fuzzy network, which can be driven by plant operator, is very effective, Simulation results of the proposed method using the data of water treatment plant show good performance. This algorithm is included to chemical feeder, which is composed of PLC, magnetic flow-meter and control valve, so the intelligent control of chemical feeding is realized.

Design of an integrated network management system for telecom subsystem in offshore plants

  • Kang, Nam-seon;Kim, Nam-hun;Lee, Seon-ho;Kim, Young-goon;Yoon, Hyeon-kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.863-869
    • /
    • 2015
  • This study analyzed the offshore plant industry and related regulations such as ISO, IEC, and Norsok Standards to develop an integrated network management system (INMS) capable of both on-site and remote management and configuration of IP-based network equipment in offshore plants. The INMS was designed based on actual specifications and POS plans, and a plan of management was verified through an offshore plant engineering company. Various modules such as PAGA interface modules, CCTV, IP-PBX, and HF-radio communication modules were developed for system implementation. Protocol and data design and screen design were followed by framework development and introduction of the automatic satellite communication function.

Conceptual Design of a Remote Monitoring and Control System for Nuclear Power Plants

  • Lee Seung Jun;Kim Jong Hyun;Seong Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.243-250
    • /
    • 2003
  • Nuclear power plants (NPPs) will be highly connected network enabled systems in the future. Using the network and web enabled tools, NPPs will be remotely monitored by operators at any time from any place connected to the network via a general web browser. However, there will be two major issues associated with this implementation. The first is the security issue. Only the authorized persons need to be allowed to access the plant since NPP is a safety-critical system. However, the web technology is open to the public. The second is the network disturbance issue. If operators can not access the plant due to network disturbances, the plant will come into the out-of-control situation. Therefore, in this work, we performed a conceptual design of a web-based remote monitoring and control system (RMCS) considering these issues.

지능알고리즘에 의한 정수장 약품주입제어에 관한 연구 (A Study on Coagulant Feeding Control of the Water Treatment Plant Using Intelligent Algorithms)

  • 김용열;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제9권1호
    • /
    • pp.57-62
    • /
    • 2003
  • It is difficult to determine the feeding rate of coagulant in the water treatment plant, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the genetic-fuzzy system genetic-equation system and the neural network system were used in determining the feeding rate of the coagulant. Fuzzy system and neural network system are excellently robust in multivariables and nonlinear problems. but fuzzy system is difficult to construct the fuzzy parameter such as the rule table and the membership function. Therefore we made the genetic-fuzzy system by the fusion of genetic algorithms and fuzzy system, and also made the feeding rate equation by genetic algorithms. To train fuzzy system, equation parameter and neural network system, the actual operation data of the water treatment plant was used. We determined optimized feeding rates of coagulant by the fuzzy system, the equation and the neural network and also compared them with the feeding rates of the actual operation data.

신경회로망의 예측제어기를 이용한 보일러의 온도제어에 관한 연구 (On the Temperature Control of Boiler using Neural Network Predictive Controller)

  • 엄상희;이권순;배종일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.798-800
    • /
    • 1995
  • The neural network predictive controller(NNPC) is proposed for the attempt to mimic the function of brain that forecasts the future. It consists of two loops, one is for the prediction of output(Neural Network Predictor) and the other one is for control the plant(Neural Network Controller). The output of NNC makes the control input of plant, which is followed by the variation of both plant error and prediction error. The NNP forecasts the future output based upon the current control input and the estimated control output. The method is applied to the control of temperature in boiler systems. The proposed NNPC is compared with the other conventional control methods such as PID controller, neural network controller with specialized learning architecture, and one-step-ahead controller. The computer simulation and experimental results show that the proposed method has better performances than the other methods.

  • PDF