• Title/Summary/Keyword: Plant modeling

Search Result 897, Processing Time 0.031 seconds

Controller design for a hydrocone crusher I

  • Mwangobola, Raphael;Sasaki, Minoru;Fujisawa, fumio;Yamamoto, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.259-262
    • /
    • 1996
  • This paper proposes an approach in modeling a 4x60inch Allis Chalmers Hydrocone Crusher [1] hydroset and presents some numerical simulation results. The mining and quarry industry is one of the industries which extensively use hydrocone crushers, which are a family of cone crushers, for rock size reduction. Field studies have proved that if proper control and management of these machines is undertaken, they can yield an increased production output of more than 30%, in addition substantial savings in both energy consumption per unit ton produced and manpower can be easily realized. In order to achieve these economic benefits, high performance from these machines is expected. Implementing automatic control for such machines would be a great leap towards achieving both economic benefits and more effective fool-proof predictive maintenance. But, unfortunately, for such a control system to be designed, it necessary to make a mechatronical model of this plant. The plant model is able to give us an insight into variations of both the plant gap setting (displacement) and system pressure due to variable loading arising from the crushing process.

  • PDF

Optimization Study for the Design of Deethanizer Column (탈에탄탑 설계를 위한 공정 최적화에 대한 연구)

  • Cho, Jung-Ho;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3755-3760
    • /
    • 2009
  • In this study, we have completed the simulation and optimization work for the deethanizer column which was used for natural gas processing plant or saturated gas plant in a petrochemical process. An optimal feed stage location which minimizes the reboiler heat duty was determined. For the modeling of deethanizer, PRO/II with PROVISION was used and Soave modified Redlich-Kwong equation of state model was selected. Through this study, we have found that the minimum number of stage and minimum reflux ratio for separation were 9.03 and 0.62437, respectively and the theoretical stage number was 12, optimal feed stage location was 9 and minimum reboiler heat duty was $12.7470{\times}10^6\;KJ/hr$.

AN OVERVIEW OF RISK QUANTIFICATION ISSUES FOR DIGITALIZED NUCLEAR POWER PLANTS USING A STATIC FAULT TREE

  • Kang, Hyun-Gook;Kim, Man-Cheol;Lee, Seung-Jun;Lee, Ho-Jung;Eom, Heung-Seop;Choi, Jong-Gyun;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.849-858
    • /
    • 2009
  • Risk caused by safety-critical instrumentation and control (I&C) systems considerably affects overall plant risk. As digitalization of safety-critical systems in nuclear power plants progresses, a risk model of a digitalized safety system is required and must be included in a plant safety model in order to assess this risk effect on the plant. Unique features of a digital system cause some challenges in risk modeling. This article aims at providing an overview of the issues related to the development of a static fault-tree-based risk model. We categorize the complicated issues of digital system probabilistic risk assessment (PRA) into four groups based on their characteristics: hardware module issues, software issues, system issues, and safety function issues. Quantification of the effect of these issues dominates the quality of a developed risk model. Recent research activities for addressing various issues, such as the modeling framework of a software-based system, the software failure probability and the fault coverage of a self monitoring mechanism, are discussed. Although these issues are interrelated and affect each other, the categorized and systematic approach suggested here will provide a proper insight for analyzing risk from a digital system.

Comparison of event tree/fault tree and convolution approaches in calculating station blackout risk in a nuclear power plant

  • Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.141-146
    • /
    • 2024
  • Station blackout (SBO) risk is one of the most significant contributors to nuclear power plant risk. In this paper, the sequence probability formulas derived by the convolution approach are compared with those derived by the conventional event tree/fault tree (ET/FT) approach for the SBO situation in which emergency diesel generators fail to start. The comparison identifies what makes the ET/FT approach more conservative and raises the issue regarding the mission time of a turbine-driven auxiliary feedwater pump (TDP), which suggests a possible modeling improvement in the ET/FT approach. Monte Carlo simulations with up-to-date component reliability data validate the convolution approach. The sequence probability of an alternative alternating current diesel generator (AAC DG) failing to start and the TDP failing to operate owing to battery depletion contributes most to the SBO risk. The probability overestimation of the scenario in which the AAC DG fails to run and the TDP fails to operate owing to battery depletion contributes most to the SBO risk overestimation determined by the ET/FT approach. The modification of the TDP mission time renders the sequence probabilities determined by the ET/FT approach more consistent with those determined by the convolution approach.

Hybrid 신경망을 이용한 산업폐수 공정 모델링

  • Lee, Dae-Seong;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.133-136
    • /
    • 2000
  • In recent years, hybrid neural network approaches which combine neural networks and mechanistic models have been gaining considerable interests. These approaches are potentially very efficient to obtain more accurate predictions of process dynamics by combining mechanistic and neural models in such a way that the neural network model properly captures unknown and nonlinear parts of the mechanistic model. In this work, such an approach was applied in the modeling of a full-scale coke wastewater treatment process. First, a simplified mechanistic model was developed based on the Activated Sludge Model No.1 and the specific process knowledge, Then neural network was incorporated with the mechanistic model to compensate the errors between the mechanistic model and the process data. Simulation and actual process data showed that the hybrid modeling approach could predict accurate process dynamics of industrial wastewater treatment plant. The promising results indicated that the hybrid modeling approach could be a useful tool for accurate and cost-effective modeling of biochemical processes.

  • PDF

A VALIDATION METHOD FOR EMERGENCY OPERATING PROCEDURES OF NUCLEAR POWER PLANTS BASED ON DYNAMIC MULTI-LEVEL FLOW MODELING

  • QIN WEI;SEONG POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.118-126
    • /
    • 2005
  • While emergency operating procedures (EOPs) occupy an important role in the management of various abnormal situations in nuclear power plants (NPPs), current technology for the validation of EOPs still largely depends on manual review. A validation method for EOPs of NPPs is thus proposed based on dynamic multi-level flow modeling (MFM). The MFM modeling procedure and the EOP validation procedure are developed and provided in the paper. Application of the proposed method to EOPs of an actual NPP shows that the proposed method provides an efficient means of validating EOPs. It is also found that the information on state transitions in MFM models during the management of abnormal situations is also useful for further analysis on EOPs including their optimization.

A Study on the Model of Light Interception and Absorption in Plant Canopies (植物의 樹冠에 있어서 光의 遮斷과 吸收 Model 에 關한 硏究)

  • Chang, Nam-Kee;Kyung-Oh Kwon
    • The Korean Journal of Ecology
    • /
    • v.8 no.2
    • /
    • pp.61-68
    • /
    • 1985
  • The modeling of interception and absorption of light was studied in plant canopies at Mt. Kwanak. Followering results were obtained. Light intensity passing through the stacked leaves is attenuated exponentially. This phenomenon seems to be more clearly applied to the plant canopies, if they have large cumulative leaf area and are matured densely. Light interception and absorption are influenced by leaf thickness, shape pigments, and leaf area, and they have great effect on the maturation of canopies. It was confirmed that the light penetrating through the stratified canopies is decreased exponentially in dual pattern. The cumulative leaf area of a definite space in a certain plant canopy is the same as the growth of leaf area of the canopy at that time. A hypothetical model for calculating the light absorption in plant canopies, was established on the bases of phenomena that incident light is captured at the maximum level and light inerception effect is minimized by leaves.

  • PDF

A Study on Start·Stop System at Water Turbine-Generator for Tidal Power Plant (조력발전용 수차발전기의 기동·정지시스템에 관한 연구)

  • Oh, Min-Hwan;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • Tidal power is one of new and renewable energy sources. Tidal power is generated by using the gap in the water level between the water outside and inside the embankment. All tidal power plant in Korea were being operated by import of turn-key from abroad. The know-how and technology which are the most important to build predictive control system has become increasingly difficult to obtain from advanced countries because most of them avoid to transfer, which the domestic development of the control system is needed. In this paper, a study on start stop system at water turbine-generator for tidal power plant at the beginning of development was presented. For improvement the efficiency and develope of core technology of the start stop system, the technique and characteristics of tidal power, modeling, maximum generation calculation method, and optimal control of joint control system in Sihwa tidal power plant were studied.