• Title/Summary/Keyword: Plant material

Search Result 2,185, Processing Time 0.035 seconds

A Study on Process Management Method of Offshore Plant Piping Material using Process Mining Technique (프로세스 마이닝 기법을 이용한 해양플랜트 배관재 제작 공정 관리 방법에 관한 연구)

  • Park, JungGoo;Kim, MinGyu;Woo, JongHun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.143-151
    • /
    • 2019
  • This study describes a method for analyzing log data generated in a process using process mining techniques. A system for collecting and analyzing a large amount of log data generated in the process of manufacturing an offshore plant piping material was constructed. The analyzed data was visualized through various methods. Through the analysis of the process model, it was evaluated whether the process performance was correctly input. Through the pattern analysis of the log data, it is possible to check beforehand whether the problem process occurred. In addition, we analyzed the process performance data of partner companies and identified the load of their processes. These data can be used as reference data for pipe production allocation. Real-time decision-making is required to cope with the various variances that arise in offshore plant production. To do this, we have built a system that can analyze the log data of real - time system and make decisions.

Comparative Analysis of Latex Plants by GC-MS using Methanol Extraction

  • J. Varshini Premakumari;M. Job Gopinath;B. Narmadha
    • Mass Spectrometry Letters
    • /
    • v.14 no.1
    • /
    • pp.9-23
    • /
    • 2023
  • Plants are able to produce a large number of diverse bioactive compounds. Solvent extraction is used for isolation of plant metabolites. The extract yield for plant metabolite extraction strongly depends on the nature of solvent. A review showed the methanol can yield more bioactive compounds. Drying of the sample material is also important for the extraction of plant material. The present study was carried out to analyze the phytocomponents of 5 different latex producing plants. The plants like Calotropis gigantea, Carica papaya, Nerium oleander, Ficus benghalensis and Plumeria alba leaves and latex. The GC-MS analysis of the metabolites revealed phytocomponents. Calotropis gigantea leaves showed 14 compounds and latex produced 5 compounds out of this 4,4,6A,6B,8A,11,11,14B-Octamethyl-1,4,4A,5,6,6A,6B,7,8,8A,9,10,11,12,12A,14,14A,14B-Octadeca-hydro-2 and 2R- Acetoxymethyl-1,3,3-trimethyl-4T-(3-Methyl-2-Buten-1-Yl)-1T-Cyclohexanol compound was present in both latex and leaf extraction. Beta. -carotene compound was present in both latex and leaf of Carica papaya. It was observed that Ficus benghalensis contained 2R-Acetoxymethyl-1,3,3-trimethyl-4T-(3-Methyl-2-Buten-1-Yl)-1T-Cyclohexanol was same in latex and leaf extraction.

Effect of biocide addition on plantlet growth and contamination occurrence during the in vitro culture of blueberry

  • Huh, Yoon Sun;Lee, Joung Kwan;Kim, Ik Jei;Kang, Bo Goo;Lee, Ki Yeol
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.111-116
    • /
    • 2015
  • Interest and great demand for blueberry (Vaccinium corymbosum) have increased, as V. corymbosum is now one of the most economically important crops in Korea. It is expected that blueberry production and the area planted for cultivation will increase consistently in the years ahead because of high profitability and the consumer's demand for healthy ingredients. Effective mass production of blueberry is urgently needed for commercial cultivation establishment, but a main limitation is lack of a propagation system that produces a disease-free plant material for commercial plantation. A large amount of research has focused entirely on developing tissue culture techniques for blueberry propagation. However, controlling fungal and bacterial contamination of woody plant material is extremely difficult. Our study was conducted to investigate the effect of biocide addition during the in vitro culture of blueberry on plantlet growth and contamination occurrence. Four biocides, including Plant Preservative Mixture ($PPM^{TM}$), vancomycin, nystatin and penicillin G, were used in varying concentrations during the in vitro propagation of blueberry. When nystatin was added into the medium at low concentrations, the overall growth of blueberry plantlets was retarded. Addition of vancomycin and penicillin G in high concentrations decreased contamination but induced plantlet mortality. On the other hand, when 1ml/L $PPM^{TM}$ was added, the growth characteristics of blueberry plantlets did not significantly differ from non-treatment (control), and the contamination occurrence rate was very low. From these results, we found that the addition of the appropriate biocide could provide an effective method to reduce contamination in the culture process, thereby raising in vitro production efficiency.

The Properties of Plant Fiber and Polyester Blended Nonwoven Fabrics (식물성 섬유와 폴리에스테르 섬유의 혼합 부직포 제조 및 특성 -어저귀, 칡섬유를 중심으로-)

  • Lee, Hye-Ja;Kim, Nam-Eun;Yoo, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.11
    • /
    • pp.1696-1706
    • /
    • 2009
  • Nonwoven fabrics have been widely used in various fields that include household, industrial, agricultural, medical goods, especially in the automobile industry. In this study, eco-friendly fiber materials were developed and investigated as a substitute material for polyester fibers in nonwovens. To make plant fiber bundles, stems of Indian mallow (IM), and Kuzu vine (KV) were retted; in addition, the non-cellulose component was partially removed. Plant fiber bundles and polyester fibers (P) were blended and needle punched to produce nonwovens. Five kinds of nonwovens were manufactured: P100 (Polyester 100%), IM10 (IM 10% and Polyester 90%), IM20 (IM 20% and Polyester 80%), KV10 (KV 10% and Polyester 90%), and KV20 (KV 20% and Polyester 80%). The color values, surface appearance, tensile strength, elongation, tear strength, abrasion strength, flexstiffness, moisture regain, water or oil absorbency, and static electricity of manufactured nonwovens are investigated. As the blended ratios of IM or KV increased, the brightness of nonwovens decreased compared to that of polyester 100%. Tensile strength, tear strength, abrasion strength, and flexstiffness of IM10 as well as KV10 were higher than those of P100, IM20, and KV20, resulting from the influence of the structure and properties of nonwoven fibers. Moisture regain and water or oil absorbency increased, while static electricity decreased in proportion to the amount of plant fibers. IM or KV and polyester blended nonwovens showed improved properties over P100 that could be substituted for P100 as a novel material for textiles.

Preliminary pharmacognostical and phytochemical evaluation of Stachys tibetica Vatke

  • Kumar, Dinesh;Bhat, Zulfiqar Ali;Kumar, Vijender;Chashoo, Ishtaq Ahmad;Khan, Nisar Ahmad;Ara, Irfat;Shah, Mohammad Yassin
    • CELLMED
    • /
    • v.2 no.1
    • /
    • pp.11.1-11.7
    • /
    • 2012
  • Stachys tibetica Vatke (Lamiaceae) is an important medicinal plant in the folk medicine of Ladakh, India and Tibet for the treatment of various mental disorders. Infusion and decoction of the whole plant is used as a cup of tea for a severe fever, headaches and to relieve tension. The recent study is aimed to evaluate the preliminary pharmacognostical and phytochemical nature of Stachys tibetica Vatke. The whole plant material was subjected to successive soxhlet extraction with petroleum ether (40 - $60^{\circ}C$), chloroform, ethyl acetate, methanol and finally decocted with water to get the respective extracts. The fluorescence characteristics of the powdered materials were analysed under ultraviolet light and ordinary light. Different physicochemical parameters such as ash value, extractive value, foaming index, pH values, loss on drying and determination of foreign matter were carried out as per WHO guidelines. The total fat, flavonoid, saponin and volatile contents were also determined. Macroscopical studies revealed the authentication of the plant drug. Physicochemical parameters helped to standardize the plant material while preliminary qualitative chemical tests of different extracts showed the presence of Glycosides, Carbohydrates, Phytosterols/triterpenoids, Saponins, Fixed oils, Fats and phenols/tannins. Quantification of the total flavonoids and saponins and contents were determined as $54.66{\pm}0.58mg/g$ and $75.42{\pm}0.48mg/kg$ respectively, while the volatile and fat contents were 6.5% and 0.7% respectively. Results may lay the foundation for the standardization of the drug and discovery of new molecules from S. tibetica for the treatment of various diseases.

Development of Ready-mixed Shotcrete I : Basic Study (레디믹스트 숏크리트 개발 I : 기초 연구)

  • Kim, Dong-Min;Ma, Sang-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.171-185
    • /
    • 2011
  • Ready-mixed shotcrete that mixed with high quality aggregate and can improve construction quality is produced in a dry mortar plant and transported to construction sites. Because of using aggregate that produced in a special plant, Ready-mixed shotcrete has many advantages : good grain-size distribution, minimum stone powder, high quality and standardization material, etc. In this basic study different from the existing study that limited to additive and accelerator, the improvement of aggregate quality was tried to upgrade the shotcrete performance. The investigation about the construction conditions of shotcrete was performed and the result of an opinion poll was analyzed for a good grasp of the problems in domestic shotcrete quality. Pilot Plant Test was also performed to minimize the material segregation in plant manufacturing process. In additions, the field test was performed to find the optimum contents of synthetic fiber, appearing the same flexible toughness with that of steel fiber, and to find the optimum replacement ratio of blast furnace slag.

Insecticidal Activities of Tussilago farfara Extracts against Culex pipiens pallens and Tetranychus urticae (빨간집모기와 점박이응애에 대한 관동화(Tussilago farfara) 추출물의 살충효과)

  • Park, Sung Ho;Oh, Hyun-Woo;Kwon, Hye-Ri;Seo, Mi-Ja;Yu, Yong-Man;Youn, Young-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.177-185
    • /
    • 2014
  • Aspiring to the new raw materials of insecticides is one of the plant extracts. The material structure of a variety of plant extracts have because the material to the defense of the plant itself, the case of insecticides, using plant extracts, safe, has low toxicity and has the advantage of highly distinctive and fall. Coltsfoot (Tussilago farfara L.) is belonging to the family Compositae, and distributed in all parts of China as medicinal plants and indigenous plants used. Coltsfoot is known that it is effect to respiratory disease and has an antiviral effect. However, the reported insecticidal activity of coltsfoot could be not found. Fortunately, I found insecticidal activities when I was screening the bioassay against several insects with a lot of plant extracts. Using the ethanol extract of the Tussilago farfara, there were insecticidal activities against Culex pipiens pallens and Tetranychus urticae. There were several fractions in ethanol extract of coltsfoot by using various organic solvents. Hexane fraction showed a higher insecticidal activity than any other fraction. It is confirmed that hexane fraction contained pyrethrin by using HPLC analysis. So, it might be suggested that extract of coltsfoot has an insecticidal activity and its effect due to a ingredient of pyrethrin.

A Study on Performance of PEMFC with Variations on Stack Temperature and Mass Flow Rate (스택온도 및 유량변화에 따른 PEMFC의 출력특성 연구)

  • Park, Se-Joon;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.140-140
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEM-type FCs system was integrated by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with variations on mass flow rate and stack temperature. The ranges of the variations are $20{\sim}70^{\circ}C$ on stack temperature and 1~8L/min on $H_2$ volume.

  • PDF

A Study on Rolling Mill Dynamics Model and Automatic Gauge Control System

  • Kim, Tae-Young;Kwon, Dae-Hyun;Choi, Won-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.120-125
    • /
    • 2004
  • In the rolling of steel or non-steel metal the most important quality aspect are thickness and flatness. In thickness, there are two important factors. One of them is getting close with accurate goal, nominal gauge, the other is minimize gauge bandwidth, the variation in gauge. In this thesis, we proposed the fuzzy model AGC to minimize gauge variation along the length, developed the rolling mill dynamic model using the math mode of the rolling mill process and the rolling model related with the variety character of the rolling material. We compared the gauge control efficiency of fuzzy model AGC and PI mass flow AGC. We have got a simulation result, that the exit gauge variation of PI mass flow AGC was 2 micron and fuzzy model AGC was 1.2 micron at 1200mpm of rolling speed when each controller was rolling 5 micron of material that is the entry gauge variation.

  • PDF

Quantitative NMR Analysis of PTMEG compounds

  • Kim, Gilhoon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • PTMEG(Polytetramethylene ether glycol) is a polymer compound widely used as a wide range of applications in the textile industry. PTMEG substance carrying various 1,800~2,000 molecular weight are mainly used as the raw material of the spandex production. Molecular weight and degree of polymerization value for 4 different PTMEG samples under pilot plant scale synthetic process were determined by a new quantitative NMR method. In NMR experiments, p-toluenesulfonic acid(TSOH) was used for external standard material of PTMEG quantitative analysis. were measuring The concentration of the primary standard TSOH was measured by UV/Vis spectroscopy. By using NMR peak assignments and the integral values of designated proton NMR peaks, We were able to measure the % composition of the synthetic PTMEG polymers, concentrations, molecular weight and the degree of polymerization that show the synthetic process of each manufacturing pilot plant. By utilizing a newly developed quantitative NMR method were able to obtain the molecular weight of PTMEG samples within 0.08 error % range.