• Title/Summary/Keyword: Plant litter

Search Result 114, Processing Time 0.018 seconds

Artificial Insemination with Low-Dose Semen does not affect Swine Reproductive Performances

  • Chung, Ki-Hwa;Lee, Il-Joo;Sa, Soo-Jin;Kim, In-Cheul;Jung, Byeong-Yeal;Son, Jung-Ho
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.263-267
    • /
    • 2013
  • Pig producers have been shown keen interest of the number of spermatozoa in a semen dose since pig artificial insemination introduce. However, determining the minimal number of spermatozoa need per AI without detrimental effect on overall reproductive performances is not an easy question to answer. To increase the efficiency of semen utilization in pig AI, optimum number of spermatozoa per dose needed to determine. The objective of this study was to determine the reproductive performance and factors that affect on-farm application of low-dose semen insemination in sows. Data were collected from Darby Genetics AI studs from 4th of June to 7th of July, 2012 (n=401). The numbers of parturition were 84, 234 and 83 in sows inseminated with doses of $1.5{\times}10^9$, $2.0{\times}10^9$ and $2.5{\times}10^9$ spermatozoa in 100ml extender, respectively. There were no significant differences on reproductive performances such as gestation period, total born, total born alive, stillbirth and mummy in sows inseminated with different semen doses. The average number of born alive was 10.5, 11.0 and 10.4 from sows inseminated with $1.5{\times}10^9$, $2.0{\times}10^9$ and $2.5{\times}10^9$ sperms, respectively. Also, number of spermatozoa per dose did not affect litter size (p>0.10). There were no significant differences of maternal genetic line difference on gestation period, total number born, number born alive, born dead and mummy. The estimated correlation coefficients of the different semen doses with total number born, number born alive, born dead and mummy were r=-0.00, -0.01, 0.02 and 0.02, respectively. Taken together, the result of this study suggested that when semen was appropriately inseminated after induced ovulation, insemination with low-dose ($1.5{\sim}2.0{\times}10^9$) semen dose not adversely affect sow's fertility.

The Research on the Phytosociological Characteristics of Abies nephrolepis Maxim. Community in Mt. Seorak, Korea (설악산 분비나무군락의 식물사회학적 특성)

  • Lee, Ho-Young;Chung, Bo-Kwang;Chun, Young-Moon;Oh, Choong-Hyeon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.1
    • /
    • pp.37-47
    • /
    • 2021
  • This study carried out the plant sociological survey of Abies nephrolepis forest in Mt. Seorak, which is in danger of deterioration due to the accelerated climate change. We examined seventy quadrats obtained from the survey and used the TWINSPAN technique to classify communities. We then performed the DCA method for the sequence analysis and analyzed the characteristics of each community. A. nephrolepis forest of Mt. Seorak is composed of four communities (A. nephrolepis-Lonicera caerulea var. edulis community, A. nephrolepis-Acer komarovii community, A. nephrolepis-Ac. pseudosieboldianum community, and A. nephrolepis-Betula costata community). Each community showed a different distribution according to location because different microenvironments are formed depending on location such as altitude and slope direction, resulting in different species composition. Each community showed differences in environmental characteristics such as altitude, rock ratio, soil characteristics, and litter layer thickness. As a result, there were significant differences between communities in the number of species and individuals, coverage, tree size, and species diversity, as well as differences in species composition. The A. nephrolepis-L. caerulea var. edulis and A. nephrolepis-Ac. komarovii communities were located in high altitude with high rock ratios and had little development of tree layer. On the other hand, the A. nephrolepis-Ac. pseudosieboldianum and A. nephrolepis-B. costata communities were relatively in low altitude with high soil ratio and had the development of tree layer with high species diversity.

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.