• Title/Summary/Keyword: Plant canopy model

Search Result 44, Processing Time 0.032 seconds

High-Resolution Sentinel-2 Imagery Correction Using BRDF Ensemble Model (BRDF 앙상블 모델을 이용한 고해상도 Sentinel-2 영상 보정)

  • Hyun-Dong Moon;Bo-Kyeong Kim;Kyeong-Min Kim;Subin Choi;Euni Jo;Hoyong Ahn;Jae-Hyun Ryu;Sung-Won Choi;Jaeil Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1427-1435
    • /
    • 2023
  • Vegetation indices based on selected wavelength reflectance measurements are used to represent crop growth and physiological conditions. However, the anisotropic properties of the crop canopy surface can govern spectral reflectance and vegetation indices. In this study, we applied an ensemble of bidirectional reflectance distribution function (BRDF) models to high-resolution Sentinel-2 satellite imagery and compared the differences between correction results before and after reflectance. In the red and near-infrared (NIR) band reflectance images, BRDF-corrected outlier values appeared in certain urban and paddy fields of farmland areas and forest shadow areas. These effects were equally observed when calculating the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2). Furthermore, the outlier values in corrected NIR band were shown in pixels shadowed by mountain terrain. These results are expected to contribute to the development and improvement of BRDF models in high-resolution satellite images.

Changes in Radiation Use Efficiency of Rice Canopies under Different Nitrogen Nutrition Status (질소영양 상태에 따른 벼 군락의 광 이용효율 변화)

  • Lee Dong-Yun;Kim Min-Ho;Lee Kyu-Jong;Lee Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.190-198
    • /
    • 2006
  • Radiation use efficiency (RUE), the amount of biomass produced per unit intercepted photosynthetically active radiation (PAR), constitutes a main part of crop growth simulation models. The objective of the present study was to evaluate the variation of RUE of rice plants under various nitrogen nutritive conditions. from 1998 to 2000, shoot dry weight (DW), intercepted PAR of rice canopies, and nitrogen nutritive status were measured in various nitrogen fertilization regimes using japonica and Tongil-type varieties. These data were used for estimating the average RUEs before heading and the relationship between RUE and the nitrogen nutritive status. The canopy extinction coefficient (K) increased with the growth of rice until maximum tillering stage and maintained constant at about 0.4 from maximum tillering to heading stage, rapidly increasing again after heading stage. The DW growth revealed significant linear correlation with the cumulative PAR interception of the canopy, enabling the estimation of the average RUE before heading with the slopes of the regression lines. Average RUE tended to increase with the increased level of nitrogen fertilization. RUE increased approaching maximum as the nitrogen nutrition index (NNI) calculated by the ratio of actual shoot N concentration to the critical N concentration for the maximum growth at any growth stage and the specific leaf nitrogen $(SLN;\;g/m^2\;leaf\;area)$ increased. This relationship between RUE (g/MJ of PAR) and N nutritive status was expressed well by the following exponential functions: $$RUE=3.13\{1-exp(-4.33NNNI+1.26)\}$$ $$RUE=3.17\{1-exp(-1.33SLN+0.04)\}$$ The above equations explained, respectively, about 80% and 75% of the average RUE variation due to varying nitrogen nutritive status of rice plants. However, these equations would have some limitations if incorporated as a component model to simulate the rice growth as they are based on relationships averaged over the entire growth period before heading.

Prediction of Transpiration Rate of Lettuces (Lactuca sativa L.) in Plant Factory by Penman-Monteith Model (Penman-Monteith 모델에 의한 식물공장 내 상추(Lactuca sativa L.)의 증산량 예측)

  • Lee, June Woo;Eom, Jung Nam;Kang, Woo Hyun;Shin, Jong Hwa;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.182-187
    • /
    • 2013
  • In closed plant production system like plant factory, changes in environmental factors should be identified for conducting efficient environmental control as well as predicting energy consumption. Since high relative humidity (RH) is essential for crop production in the plant factory, transpiration is closely related with RH and should be quantified. In this study, four varieties of lettuces (Lactuca sativa L.) were grown in a plant factory, and the leaf areas and transpiration rates of the plants according to DAT (day after transplanting) were measured. The coefficients of the simplified Penman-Monteith equation were calibrated in order to calculate the transpiration rate in the plant factory and the total amount of transpiration during cultivation period was predicted by simulation. The following model was used: $E_d=a*(1-e^{-k*LAI})*RAD_{in}+b*LAI*VPD_d$ (at daytime) and $E_n=b*LAI*VPD_n$ (at nighttime) for estimating transpiration of the lettuce in the plant factory. Leaf area and transpiration rate increased with DAT as exponential growth. Proportional relationship was obtained between leaf area and transpiration rate. Total amounts of transpiration of lettuces grown in plant factory could be obtained by the models with high $r^2$ values. The results indicated the simplified Penman-Monteith equation could be used to predict water requirements as well as heating and cooling loads required in plant factory system.

Managing Within-Field Spatial Yield Variation of Rice by Site-Specific Prescription of Panicle Nitrogen Fertilizer

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.238-246
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if variable rate treatment (VRT) of N fertilizer, that was prescribed for site-specific management at panicle initiation stage, could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, 33kg N/ha at PIS) method. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model· equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for the calculation of the required N were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with an average of 57kg/ha that was higher than 33 kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%$ and $7.1\%$ in VRT from $14.6\%$ and $13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. In conclusion the procedure used in this paper was believed to be reliable and promising method for reducing within-field spatial variability of rice yield and protein content. However, inexpensive, reliable, and fast estimation methods of natural N supply and plant growth and nutrition status should be prepared before this method could be practically used for site-specific crop management in large-scale rice field.

Estimation of Nondestructive Rice Leaf Nitrogen Content Using Ground Optical Sensors (지상광학센서를 이용한 비파괴 벼 엽 질소함량 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.435-441
    • /
    • 2007
  • Ground-based optical sensing over the crop canopy provides information on the mass of plant body which reflects the light, as well as crop nitrogen content which is closely related to the greenness of plant leaves. This method has the merits of being non-destructive real-time based, and thus can be conveniently used for decision making on application of nitrogen fertilizers for crops standing in fields. In the present study relationships among leaf nitrogen content of rice canopy, crop growth status, and Normalized Difference Vegetation Index (NDVI) values were investigated. We measured Green normalized difference vegetation index($gNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$) and NDVI($({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$) were measured by using two different active sensors (Greenseeker, NTech Inc. USA). The study was conducted in the years 2005-06 during the rice growing season at the experimental plots of National Institute of Agricultural Science and Technology located at Suwon, Korea. The experiments carried out with randomized complete block design with the application of four levels of nitrogen fertilizers (0, 70, 100, 130kg N/ha) and same amount of phosphorous and potassium content of the fertilizers. gNDVI and rNDVI increased as growth advanced and reached to maximum values at around early August, G(NDVI) were a decrease in values of observed with the crop maturation. gNDVI values and leaf nitrogen content were highly correlated at early July in 2005 and 2006. On the basis of this finding we attempted to estimate the leaf N contents using gNDVI data obtained in 2005 and 2006. The determination coefficients of the linear model by gNDVI in the years 2005 and 2006 were 0.88 and 0.94, respectively. The measured and estimated leaf N contents using gNDVI values showed good agreement ($R^2=0.86^{***}$). Results from this study show that gNDVI values represent a significant positive correlation with leaf N contents and can be used to estimate leaf N before the panicle formation stage. gNDVI appeared to be a very effective parameter to estimate leaf N content the rice canopy.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

SPATIAL YIELD VARIABILITY AND SITE-SPECIFIC NITROGEN PRESCRIPTION FOR THE IMPROVED YIELD AND GRAIN QUALITY OF RICE

  • Lee Byun-Woo;Nguyen Tuan Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.57-74
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, the two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if prescribed N for site-specific fertilizer management at panicle initiation stage (VRT) could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, ,33 kg N/ha at PIS) method. The trial field was subdivided into two parts and each part was subjected to UN and VRT treatment. Each part was schematically divided in $10\times10m$ grids for growth and yield measurement or VRT treatment. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for this calculation were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with average of 57kg/ha that was higher than 33kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%\;and\;7.1\%$ in VRT from $14.6\%\;and\;13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. Although N use efficiency of VRT compared to UN was not quantified due to lack of no N control treatment, the procedure used in this paper for VRT estimation was believed to be reliable and promising method for managing within-field spatial variability of yield and protein content. The method should be received further study before it could be practically used for site-specific crop management in large-scale rice field.

  • PDF

Study on Conservation and Habitat Restoration Based on Ecological Diagnosis for Cymbidium kanran Makino in Jeju Island, Korea (한국 제주도 한란의 생태 진단에 기초한 보전 및 서식지 복원에 관한 연구)

  • Jung, Ji-Young;Shin, Jae-Kwon;Kim, Han-Gyeoul;Byun, Jun-Gi;Pi, Jung-Hun;Koo, Bon-Yeol;Park, Jeong-Geun;Suh, Gang-Uk;Lee, Cheul-Ho;Son, Sung-Won;Kim, Jun-Soo;Cho, Hyun-Je;Bae, Kwan-Ho;Oh, Seung-Hwan;Kim, Hyun-Cheol;Kang, Seung-Tae;Cho, Yong-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.11-21
    • /
    • 2016
  • Cymbidium kanran Makino is being threatened in its own habitats due illegal collecting and habitat changes by vegetation growth along historical landuse change. In this study, we established habitat restoration model for conservation of C. kanran based on ecological diagnosis. Through exploration to Jeju Island in 2014 and 2015, we identified 27 unknown habitats of C. kanran and in there, abiotic variables and vegetation structure and composition were quantified. Altitudinal distribution of C. kanran was between 200 m~700 m a.s.l. and compared to distribution in 2004, Area of Occupation (AOO) decreased at 82%. Specific habitat affinity was not observed by evenly found in mountain slope and valley and summergreen and evergreen broadleaved forests, but likely more abundant in valley habitats with higher soil and ambient moisture. Total of 96 individual of C. kanran was observed with an average density of $942.6individuals\;ha^{-1}$. The plants showed relatively short leaf length (average=$10.7cm{\pm}1.1cm$) and small number of pseudo bulbs ($1.2{\pm}0.2$). Flowering and fruiting individuals were not observed in field. C. kanran was classified into endangered plant species as CR (Critically Endangered) category by IUCN criteria. Phenotypic plasticity of C. kanran was likely support to sustain in more shaded habitat environment and recent habatat changes to closed canopy and low light availability may exhibit negatively effects to C. kanran's life history. Restoring C. kanran habitat should create open environment as grassland and low woody species density.

Restoration for Evergreen Broad-leaved Forests by Successional Trends of Pasture-grassland in the Seonheulgot, Jeju-do (제주도 선흘곶 초지지역의 천이경향을 고려한 상록활엽수림 복원 연구)

  • Han Bong-Ho;Kim Jeong-Ho;Bae Jeong-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.4
    • /
    • pp.369-381
    • /
    • 2004
  • This study was achieved to present the way to restore the Seonheulgot pasture-grassland damaged by landuse and interference for a long time to evergreen broad-leaved forests as the native vegetation structure. As a result of analyzing ecological succession tendency of structure in survey area, we established the optimal restoration model. The total of survey sites were 26, and the classified plant community types were four types by M.I.P of dominant woody species. Finally we classified the four types based on diameter of dominant woody species in canopy layer. The six community types are as follows: Community I was runner-shrub forest, community II was evergreen broad-leaved shrub forest, and community III was evergreen broad-leaved forest of small diameter. Community IV and V were evergreen broad-leaved forest of middle diameter. Community Ⅵ was evergreen broad-leaved forest of large diameter. The number of constituent species was 24 in community I, 28 in community II as the shrub forest, 16 as the evergreen broad-leaved forest of small diameter, 29 in community III, 30 in community IV as the evergreen broad-leaved forest of middle diameter and 27 in community Ⅵ as the evergreen broad-leaved forest of large diameter. The range of Shannon's index of all communitys was from 0.8763 to 1.2630 and the Similarity index between the community composed of middle diameter woody species and large diameter woody species. The ecological succession of community I, II, and III were changed from pasture-grassland to broad-leaved forest and the structure of community IV, V, and Ⅵ was similar to evergreen broad-leaved forest in warm temperate region. We suggest the restoration planting model evergreen broad-leaved forest of in Seonheulgot pasture-grassland, as follows: The target restoration vegetation were Castanopsis cuspidata var. sievoldii community and Queycus glauca community. Castanopsis cuspidata var. sievoldii and Quercus glauca should be dominant woody species in canopy layer, the number of trees was 10 per 100$m^2$, and Castanopsis cuspidata var, sievoldii, Quercus glauca, Camellia japonica, and Eurya japonica should be dominant woody species in the understory layer, the number of trees was 14 per 100$m^2$.

Development of Ecological Restoration Model Consider Analysis on the Vegetation Structure of Burned Area (산불지역 식생구조 분석을 통한 식생복원 모델 개발)

  • Kim, Jeong-Ho;Lee, Soo-Dong
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.5
    • /
    • pp.400-414
    • /
    • 2007
  • This study has analyzed the vegetation structure to suggest a vegetation ecological restoration model by using the case of the afforestation for erosion control area with Pinus koreaiensis and Betula platyphylla, etc., on the hills of the Young-in mountains after its great fire in 2000. Of the area having a dimension of $1,152,404.3m^2$ selected as a survey site for the existing vegetation, the forest fire area accounted for 69.2% among which, brushwoods accounted the most for 24.67%. As a result of analysis of the 27 surveyed unit plots[unit dimension: $100m^2$] set up in consideration of the existing vegetation pattern and damaged state from the forest fire, the surveyed area was classified into 10 communities. Shrub layer's vegetation was found to be dominant in forest fire areas and the surveyed sites were classified into 5 plant communities, i.e. P. koraiensis community, Quercus variabilis community, P. thunbergii community, Q. serrata community, B. platyphylla community in forest fire areas, while non-forest fire areas were classified into 5 plant communities, such as P. densiflora community, Q. acutissima community, Q. serrata community, Q. mongolica-Q. serrata community, B. platyphylla community. Species diversity of forest fire areas was $0.3679{\sim}0.5907$ and that of non-forest fire areas was $0.5728{\sim}0.8865$. In addition, the number of the species in the forest fire areas was $5{\sim}8$ and that of non-forest areas was $8{\sim}12$; however, the population of forest fire areas$(156{\sim}456)$ was higher than that of non-forest fire areas$(61{\sim}227)$. In the analysis of growth density per layer$[of\;100m^2]$, there appeared $1{\sim}8$ trees of Q. mongolica and $3{\sim}5$ trees of Q. serrata in the upper layer species; $2{\sim}4$ trees of Q. serrata and one tree of Q. mongolica in the canopy layer. As for the characteristics of soil, acidity of forest fire areas was pH 5.45 and that of non-forest fire was pH 5.25. By setting up the middle D.B.H range of Q. mongolica-Q. serrata community as the vegetation restoration model, planting species, planting density and planting models are suggested.