• Title/Summary/Keyword: Plant Safety

Search Result 2,573, Processing Time 0.028 seconds

Development and validation of an analytical method for the quantification of 2,6-diisopropylnaphthalene in agricultural products using GC-MS/MS

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Chung, Yun mi;Choi, Ha na;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • An analytical method was developed and optimized for the quantification of a plant growth regulator, 2,6-diisopropylnaphthalene (2,6-DIPN), in agricultural products using gas chromatography-tandem mass spectrometry. The samples were extracted, partitioned, and were purified using a Florisil® cartridge. To validate the analytical method, its specificity, linearity, limit of detection (LOD) and limit of quantification (LOQ) of the instrument, LOQ of the analytical method (MLOQ), accuracy, and repeatability were considered. The method displayed excellent results during validation, and is suitable for the determination and quantification of the low residual levels of the analyte in the agricultural samples. All of the results with the optimized method were satisfactory and within the criteria ranges requested in the Codex Alimentarius Commission guidelines and the Ministry of Food and Drug Safety guidelines for pesticide residue analysis. The developed method is simple and accurate and can be used as a basis for safety management of 2,6-DIPN.

Comparison of the plant uptake factor of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) from the three different concentrations of PFOA and PFOS in soil to spinach and Welsh onion

  • Lee, Deuk-Yeong;Choi, Geun-Hyoung;Rho, Jin-Ho;Lee, Hyo-Sup;Park, Sang-Won;Oh, Kyeong-Yeol;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.243-248
    • /
    • 2020
  • The long-chained perfluoroalkyl acids (PFAAs), perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are a potential exposure risk in the environment, specifically for humans due to high levels of bioaccumulation, persistence, and toxicity. In the current study, the plant uptake factors (PUFs) of spinach and Welsh onion were investigated on the three different concentration levels of PFOA and PFOS in soil. Spinach and Welsh onion were divided into three residue groups, a control group and two levels of PFOA and PFOS. The PFAAs spiked soils were aged for six months and the extractable residue of PFOS in the aged soil was reduced to 30-59% of the initial spiked concentrations for PFOS, while PFOA showed almost the same initial spiked concentrations. The PUFs for PFOA and PFOS were 0.111-2.821 and 0.047-3.175 for spinach, and 0.203-0.738 and 0.035-0.181 for Welsh onion, respectively. The highest PUF values in both vegetable were displayed when the residual concentration of PFAAs were part-per-billion (ppb) or sub-ppb in soil.

Evaluation of the Actual Conditions for the Construction of a Firefighting Safety Management System in Domestic Power Plants (국내발전소 소방안전경영시스템구축을 위한 실태평가에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.89-98
    • /
    • 2018
  • Fire accidents in foreign countries, like the accident in a thermal power plant in Beijing, the accidents in domestic power plants, including Boryeong Power Plant in 2012 and Taean Power Plant in 2016, a disaster in a nuclear power plant in Fukushima in 2011 or the large-scale power failure in California in 2001 are safety accidents related to electric power, which caused losses in the people's stable lives and the countries. Electricity has an absolute impact on the people's life and the economy, so we can easily expect the serious situation affecting economic growth as well as direct damage to the protection of the people's lives and the losses of properties, if there are fire or explosion accidents or radioactive leak because of negligence in safety management, or problems because of natural disasters like an earthquake in power plants that generate electricity. In this study, it was drawn the improvement of the organizations exclusively in charge of firefighting, the operation of a program for the improvement of professional competency, the development of a customized firefighting management system for plants for systematic firefighting safety management and the improvement of the earthquake-proof correspondence system, which has recently become an issue, as measures for improvements through a survey of the actual conditions concerning the necessity of the construction of a firefighting safety management system for power plants with five power generation companies, including Korea Southern Power Co., Ltd., and the persons in charge of firefighting safety Korea Hydro & Nuclear Power Co., Ltd.

Compare of Agriculture Character of Drought-Tolerant GM in Large GM Field (대규모 GM 포장에서 내건성 GM 벼의 농업적 특성 비교)

  • Lee, Hyun-Suk;Kim, Kyung-Min
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.124-130
    • /
    • 2013
  • The significance of environment change and genetic safety has been recently recognized by many genetically modified (GM) plants. This study was to evaluate the safety of drought-tolerant rice and to identify the environment variance. The GM rice of drought-tolerant rice and four check cultivars were analyzed the data on agronomic characters and principal component in large-GM crop field. There was no significant difference in agronomic characters between the drought-tolerant rice and donor plant, 'Ilmi'. Grain yield showed the standard deviation of the difference, did not significant statistically. Related to grain characters, grain appearance were similar to the drought-tolerant rice and donor plant, 'Ilmi'. In Chemical characters, brown rice of the drought-tolerant rice and a donor plant, 'Ilmi' did difference in starch and protein, however, was similar as 'Ilpum'. These results indicated that drought-tolerant rice may perform to detect genetic safety in GM plants progeny.

  • PDF

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

Hydraulic Cylinder Design of Lifting Pump Mounting and Structural Safety Estimation of Mounting using Multi-body Dynamics (다물체 동역학을 이용한 양광펌프 거치대의 유압 실린더 설계 및 구조 안전성 평가)

  • Oh, Jae-Won;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyung;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • When a deep-seabed lifting pump is kept this device has bending and deformation in the axis due to its long length(8m). These influences can be caused a breakdown. Therefore, a mounting must be developed to keep the lifting pump safe. This paper discusses the hydraulic cylinder design of the lifting pump and structural safety estimation of the mounting using SBD(simulation-based design). The multi-body dynamic simulation method is used, which has been used in the automotive, structural, ship building, and robotics industries. In this study, the position and diameter of the hydraulic cylinder were determined based on the results of the strokes and buckling loads for the design positions of the hydraulic cylinder. A structural dynamic model of the mounting system was constructed using the determined design values, and the structural safety was evaluated using this dynamic model. According to these results, this system has a sufficient safety factor to manufacture.

Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant

  • Jahangiri, Mehdi;Hoboubi, Naser;Rostamabadi, Akbar;Keshavarzi, Sareh;Hosseini, Ali Akbar
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.6-11
    • /
    • 2016
  • Background: A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods: This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTWprocesses in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTWwas considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results: The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion: The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided.

Prediction of the Combustion Performance in the Coal-fired Boiler using Response Surface Method (반응표면법을 이용한 석탄 화력 보일러 연소특성 예측)

  • Shin, Sung Woo;Kim, Sin Woo;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • The experimental design methodology was applied in the real scale coal-fired boiler to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was provided with the numerical simulation of the coal-fired boiler. The three independent variables, high heating value of coal (HHV), overall stoichiometry excess air ratio (OST), and burner-side stoichiometry excess air ratio (BST), were set to characterize the cross section averaged NOx concentration and temperature distribution. The maximum NOx concentration was predicted accurately and mainly controlled by BST in the boiler. The parabola function was assumed for the zone averaged peak temperature distribution, and the prediction was in a fairly good agreement with the experiments except downstream. Also, the location of the peak temperature was compared with that of maximum NOx, which implies that thermal NOx formation is the main mechanism in the coal-fired boiler. These results promise the wide use of statistical models for the fast prediction and safety assessment.

Safety Assessment for Emergency Diesel Generator(EDG) Allowed Outage Time(AOT) Extension using Risk-informed (리스크정보를 활용한 비상디젤발전기 허용정지시간 연장시 안전성평가)

  • Lim, Hyuk-Soon;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.118-122
    • /
    • 2010
  • In order to provide the necessary operation flexibility during the Nuclear power operation, the extension of existing allowed outage time(AOT) is needed. The extension of AOT affects the Nuclear power plant safety. The validity of changed technical specification requirements should be proved by the safety assessments. In this paper, we evaluated the extension of emergency diesel generator AOT for a single inoperable emergency diesel generator(EDG) from 3days to 7days, 10days and 14days. Finally, the AOT extension contributes the NPP performances through decreasing the unexpected plant trips, reinforcing maintenance and avoiding risks due to unnecessary operation mode changes when the NPP is under the surveillance tests or maintenance.

Identification of the Most Conservative Condition for the Safety Analysis of a Nuclear Power Plant by Use of Random Sampling (무작위 추출 방법을 이용한 원자력발전소 보수적 안전해석 조건 결정)

  • Jeong, Hae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.131-137
    • /
    • 2015
  • For the evaluation of safety margin of a nuclear power plant using a conservative methodology, the influence of applied assumptions such as initial conditions and boundary conditions needs to be assessed deliberately. Usually, a combination of the most conservative initial conditions is determined, and the safety margin for the transient is evaluated through the analysis for this conservative conditions. In existing conservative methodologies, a most-conservative condition is searched through the analyses for the maximum, minimum, and nominal values of the major parameters. In the present study, we investigates a new approach which can be applied to choose a most-conservative initial condition effectively when a best-estimate computer code and a conservative evaluation methodology are utilized for the evaluation of safety margin of transients. By constituting the band of various initial conditions using the random sampling of input parameters, the sensitivity study for various parameters are performed systematically. A method of sampling the value of control or operation parameters for a certain range is adopted by use of MOSAIQUE program, which enables to minimize the efforts for achieving the steady-state for various different conditions. A representative control parameter is identified, which governs the reactor coolant flow rate, pressurizer pressure, pressurizer level, and steam generator level, respectively. It is shown that an appropriate distribution of input parameter is obtained by adjusting the range and distribution of the control parameter.