• 제목/요약/키워드: Plant Response

검색결과 2,616건 처리시간 0.038초

A novel WD40 protein, BnSWD1, is involved in salt stress in Brassica napus

  • Lee, Sang-Hun;Lee, Jun-Hee;Paek, Kyung-Hee;Kwon, Suk-Yoon;Cho, Hye-Sun;Kim, Shin-Je;Park, Jeong-Mee
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.165-172
    • /
    • 2010
  • Genes that are expressed early in specific response to high salinity conditions were isolated from rapeseed plant (Brassica napus L.) using an mRNA differential display method. Five PCR fragments (DD1.5) were isolated that were induced by, but showed different response kinetics to, 200 mM NaCl. Nucleotide sequence analysis and homology search revealed that the deduced amino sequences of three of the five cDNA fragments showed considerable similarity to those of ${\beta}$-mannosidase (DD1), tomato Pti-6 proteins (DD5), and the tobacco harpin-induced protein hin1 (DD4), respectively. In contrast, the remaining clones, DD3 and DD2, did not correspond to any substantial existing annotation. Using the DD3 fragment as a probe, we isolated a full-length cDNA clone from the cDNA library, which we termed BnSWD1 (Brassica napus salt responsive WD40 1). The predicted amino-acid sequence of BnSWD1 contains eight WD40 repeats and is conserved in all eukaryotes. Notably, the BnSWD1 gene is expressed at high levels under salt-stress conditions. Furthermore, we found that BnSWD1 was upregulated after treatment with abscisic acid, salicylic acid, and methyl jasmonate. Our study suggests that BnSWD1, which is a novel WD40 repeat-containing protein, has a function in salt-stress responses in plants, possibly via abscisic acid-dependent and/or -independent signaling pathways.

Subcellular Responses in Nonhost Plant Infected with Pathogenic and Non-pathogenic Strains of Xanthomonas axonopodis pv. glycines

  • Jeong, Yong-Ho;Kim, Jung-Gun;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제18권3호
    • /
    • pp.115-120
    • /
    • 2002
  • Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean, induces hypersensitive response (HR) in a non-host plant, hot pepper (Capsicum annuum). A wild-type strain (8ra) and its non-patho-genic mutant (8-13) of X. axonopodis pv. glycines were inoculated into the pepper leaf tissues and their subcellular responses to the bacterial infections were examined by electron microscopy. Intrastructural changes related to HR were found in the leaf tissues infected with 8ra from 8 h after inoculation, characterized by separation of plasmalemma from the cell wall, formation of small vacuoles and vesicles, formation of cell wall apposition, and cellular necrosis. No such responses were observed in the tissues infected with the mutant. In 8ra, the bacterial cells were attached to the cell walls, with the cell wall material dissolved into and appearing to encapsulate the bacterial cells. The bacterial cells later became entirely embedded in the cell wall material. On the other hand, in 8-13, the bacterial cells were usually not attached tightly to the plant cell wall, and no or poor encapsulation of the bacteria by the wall material occurred, although these were encircled by rather loose wall materials at the later stages.

Perennial ryegrass의 종자유래 캘러스로부터 식물체 재분화 (Plant Regeneration from Seed-Derived Callus in Perennial Ryegrass)

  • 원성혜;이병현;조진기
    • 한국초지조사료학회지
    • /
    • 제20권1호
    • /
    • pp.19-24
    • /
    • 2000
  • This study was camed out in order to establish plant regeneration via seed-derived callus of perennialryegrass.Varietal difference in callus growth and plant regeneration was obvious between two cultivars of perennialryegrass. "Reveille" showed a relatively high capacity for plant regeneration. The MS medium was superiorto SH or Bj in callus formation and plant regeneration. The highest regeneration frequency (60%) from calluswas obtained in presence of 5 mg/ l 2,4-D and 1 mg/ t kinetin. Regeneration response varied among calluscultures initiated from the same cultivar. Regeneration frequency was the most effective in 6 weeks-old calliafter initiation and lost their regeneration capacity gradually over a period of 12 weeks.(Key words : Perennial ryegrass (Lolium perenne L.), Plant regeneration)e L.), Plant regeneration)

  • PDF

Agronomic Characteristics of Alisma plantago as Affected by Transplanting Dates of in Southern Parts of Korea

  • Shin, Dong-Young;Lim, June-Taeg;Hyun, Kyu-Hwan;Kwon, Byung-Sun
    • 한국자원식물학회지
    • /
    • 제21권3호
    • /
    • pp.192-195
    • /
    • 2008
  • This study was conducted to find out some important agronomic characteristics and qualities in response to different transplanting dates in Alisma plantago at southern parts of Korea. Yield components such as number of floral axis per plant, plant height and number of leaves were highest at the transplanting date of Aug. 15 and Aug. 25. Plants sown at Aug. 15 and Aug. 25 also showed highest yield. Considering from our results, optimum transplanting date were semed to be transplanting date of Aug. 15 and Aug. 25.