• Title/Summary/Keyword: Plant Performance

Search Result 3,375, Processing Time 0.052 seconds

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

Uncertainty Estimation Model for Heat Rate of Turbine Cycle (터빈 사이클 열소비율 정확도 추정 모델)

  • Choi, Ki-Sang;Kim, Seong-Kun;Choi, Kwang-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1721-1726
    • /
    • 2004
  • Heat rate is a representative index to estimate the performance of turbine cycle in nuclear power plant. Accuracy of heat rate calculation is dependent on the accuracy of measurement for plant status variables. Uncertainty of heat rate can be modeled using uncertainty propagation model. We developed practical estimation model of heat rate uncertainty using the propagation and regression model. The uncertainty model is used in the performance analysis system developed for the operating nuclear power plant.

  • PDF

Performance Evaluation of Ocean Small Hydropower Plant by Analyzing Water Level and Flow Rate of Circulating Water (방류수의 수위 및 유량 분석을 통한 해양 소수력 성능평가)

  • Kang, Keum-Seok;Kim, Ji-Young;Ryu, Moo-Sung
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • The Samcheonpo ocean small hydropower plant (SHP) has a special feature of using marginal hydraulic head of circulating water system of fossil fuel power plant as a power source and having the characteristics of general hydropower generation and tidal power generation as well. Also, it contributes to reducing green house gases and developing clean energy source by recycling circulating water energy otherwise dissipated into the ocean. The efficiency of small hydropower plant is directly affected by effective head and flow rate of discharged water. Therefore, the efficiency characteristics of ocean hydropower plant are analyzed with the variation of water level and flow rate of discharged water, which is based on the accumulated operation data of the Samcheonpo hydropower plant. After the start of small hydropower plant operation, definite rise of water level was observed. As a result of flow pattern change from free flow to submerged flow, the instability of water surface in overall open channel is increased but it doesn't reach the extent of overflowing channel or having an effect on circulation system. Performance evaluation result shows that the generating power and efficiency of small hydropower exceeds design requirements in all conditions. Analysis results of CWP's water flow rate verify that the amount of flowing water is measured less and the highest efficiency of small hydropower plant is achieved when the effective head has its maximum value. In conclusion, efficiency curve derived from water flow rate considering tidal level shows the best fitting result with design criteria curve and it is verified that overall efficiency of hydropower system is satisfactory.

  • PDF

Analysis of the Structural Target Performance in order to Apply High-Strength Reinforcing Bars for the Nuclear Power Plant Structures (원전구조물의 고강도철근 적용을 위한 구조적 목표성능분석)

  • Lee, Byung-Soo;Bang, Chang-Joon;Lee, Han-Woo;Lim, Sang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.195-196
    • /
    • 2012
  • Because of the high level of the safety and durability, a lot of reinforcing bars is placed in the concrete structure of the Nuclear Power Plant. But the overcrowding re-bars cause some problems during the construction as the diseconomy, construction delay, quality deterioration, and so on. These problems can be solved by applying the high-strength reinforcing bars to NPP structure. To achieve this, after analysing the structural target performance like the control of cracks, adherence, shear, torsion, development of reinforcement and earthquake-resistance, the results of the analysis will be reflected in the structural performance evaluation test.

  • PDF

Thermal Performance Simulation of Cogeneration Power Plants (열병합 발전플랜트의 열성능 해석)

  • Lee, Dong-Won;O, Myeong-Do;Lee, Jae-Heon;Jo, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.451-460
    • /
    • 2001
  • An analysis program for the thermal performance prediction of steam turbine cogeneration systems with multi-extraction, reheat and regeneration has been developed on the basis of the thermodynamic heat balance method. Heat balance analyses were performed for a commercial cogeneration power plant using the program. Its appropriateness was verified by comparing its heat balance results with those of other commercial programs and those provided by the original system designer. Further parametric analyses were carried out and performance improvement measures in designing the plant were suggested.

A knowledge base construction and an application to control (지식베이스 구축과 제어응용)

  • 김도성;이명호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.407-412
    • /
    • 1989
  • Using the knowledge base which contains the patterns and data of the past experience of a plant, a learning control method is suggested. The knowledge for controlling a plant is stored to the knowledge base and continually modified after performance evaluation of an applied control input. The performance of the resultant knowledge based control system is examined by an application to process.

  • PDF

Performance Analysis of a Triple Pressure HRSG

  • Shin, Jee-Young;Son, Young-Seok;Kim, Moo-Geun;Kim, Jae-Soo-;Jeon, Yong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1746-1755
    • /
    • 2003
  • Operating characteristics of a triple pressure reheat HRSG are analyzed using a commercial software package (Gate Cycle by GE Enter Software). The calculation routine determines all the design parameters including configuration and area of each heat exchanger. The off-design calculation part has the capability of simulating the effect of any operating parameters such as power load, process requirements, and operating mode, etc., on the transient performance of the plant. The arrangement of high-temperature and intermediate-temperature components of the HRSG is changed, and its effect on the steam turbine performance and HRSG characteristics is examined. It is shown that there could be a significant difference in HRSG sizes even though thermal performance is not in great deviation. From the viewpoint of both economics and steam turbine performance, it should be carefully reviewed whether the optimum design point could exist. Off-design performance could be one of the main factors in arranging components of the HRSG because power plants operate at various off-design conditions such as ambient temperature and gas turbine load, etc. It is shown that different heat exchanger configurations lead to different performances with ambient temperature, even though they have almost the same performances at design points.

PERUPS (PERFORMANCE UPGRADE SYSTEM) FOR ON-LINE PERFORMANCE ANALYSIS OF A NUCLEAR POWER PLANT TURBINE CYCLE

  • KIM SEONGKUN;CHOI KWANGHEE
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.167-176
    • /
    • 2005
  • We developed the PERUPS system to aid the on-line performance analysis for the turbine cycle of the YongGwang 3 and 4 nuclear power plants. Procedure of measurement validation is included in the performance calculation to obtain heat balance. Precision of on-line performance calculation is increased via practical modifications of standard calculation algorithms based on the PTC (Performance Test Code). The proposed system also provides useful Web-based aids for performance analysis, including performance data management, a graphic viewer for heat balance and turbine expansion lines, and synthesized reports of performance.

Feasibility Study on Thermal Power Plant Condenser Heat Recovery for District Heating and Fuel Line Preheating (발전소 복수기 배열회수의 지역난방 및 연료라인 예열용 활용타당성 검토)

  • Jung, Hoon;Hwang, Gwang-Won
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.40-48
    • /
    • 2009
  • Recovered heat has been considered as a renewable energy in Europe since 2008 because its great effect on energy saving and carbon decreasing in plant process. Energy saving and decreasing green gas are critical issue today, so various technologies to save energy and decrease carbon dioxide in plant process have been applied to many industrial area. In this paper, the feasibility of condenser heat recovery by heat pump in power plant for district heating and fuel line preheating were reviewed by verifying energy (heat) balance and mass balance of power plant model. Some ways to compose proper system to recover heat of condenser are suggested and their possibilities are also reviewed. Limitations on heat recovery in power plant are also reviewed. The results are verified by calculating input/output energy based on actual performance test data of Taean Thermal Power Plant in Korea. There is noticeable improvement of plant performance in some cases which demand low temperature (<100 C) heat like distrcit heating, fuel line heating, and so forth.

  • PDF

Evaluation of the Nutrient Uptakes of Floating and Submerged Plants under Experimental Conditions (실험실 조건에서 부유식물과 침수식물의 영양염류 흡수능 및 특성 평가)

  • Lee, Geun-Joo;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • The performance and characteristics of nutrient removal in wetlands influenced by plant type. We tested a floating plant, Eichhornia crassipes, and a submerged plant, Ceratophyllum demersum, under the same environmental conditions to understand the differences in nutrient uptake by these different plant forms. The total nitrogen and phosphorus in the water decreased in the following order: Water Only < Water + Soil < Floating Plants ${\approx}$ Submerged Plants and Water Only < Water+Soil < Floating Plants < Submerged Plants. Nitrogen and phosphorous concentrations increased in both plants; however, the phosphorous concentration was greater in C. demersum than E. crassipes. The submerged plant exhibited higher phosphorus uptake per unit biomass than the floating plant, but nitrogen uptake did not differ significantly. These results suggest that the presence of soil influences nitrogen and phosphorus removal from water, and that wetland plants play an important role in the assimilation and precipitation of phosphorus. Understanding the differences in contaminant removal performance and characteristics of various plant forms can help in the selection of diverse plants for constructed wetlands to improve water quality and provide ecosystem services such as wildlife habitat and landscape enhancement.