• Title/Summary/Keyword: Plant Growth

Search Result 10,053, Processing Time 0.036 seconds

Intraspecific Functional Variation of Arbuscular Mycorrhizal Fungi Originated from Single Population on Plant Growth

  • Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.48-48
    • /
    • 2014
  • Arbuscular Mycorrhizal Fungi(AMF) is widespread symbiont forming mutualistic relationship with plant root in terrestrial forest in ecosystem. They provide improved absorption of nutrient and water, and enhance the resistance against plant pathogen or polluted soil, therefore AM fungi are important for survival and maintaining of individual or community of plant. For last decade, many studies about the functional variation of AM fungi on host plant growth response were showed that different geographic isolates, even same species, have different effect on host plant. However, little was known about functional variation of AM fungal isolates originated single population, which provide important insight about intraspecific diversity of AMF and their role in forest ecosystem. In this study, four AM fungal isolates of Rhizophagus clarus were cultured in vitro using transformed carrot (Daucus carota) root and they showed the difference between isolates in ontogenic characteristics such as spore density and hyphal length. The plant growth response by mycorrhizas were measured also. After 20 weeks from inoculation of these isolates to host plants, dry weight, Root:Shoot ratio, colonization rates and N, P concentration of host plant showed host plant was affected differently by AM fungal isolates. This results suggest that AM fungi have high diversity in their functionality in intraspecific level, even in same population.

  • PDF

Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion

  • Lee, Ko-Eun;Radhakrishnan, Ramalingam;Kang, Sang-Mo;You, Young-Hyun;Joo, Gil-Jae;Lee, In-Jung;Ko, Jae-Hwan;Kim, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1467-1475
    • /
    • 2015
  • The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

Selection of Proper Medium and Amount of Applied Fertilizer for Exportable Cymbidium Young Plants Grown in Korea (수출용 심비디움 묘 생산에 적합한 배지 선발 및 시비량 구명)

  • Shim, Myung-Syun;Kim, Mi-Seon
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Bark is a general medium for potted Cymbidium in Korea, but it is difficult to shake off or eliminate the medium from the roots before exporting the potted plants. This working process can injure the roots and then deteriorate plant marketability. This study was carried out to select the optimum medium easier to eliminate from the roots instead of bark and the optimum amount of applied fertilizer to improve the plant growth. Cymbidium young plants 'Honey Hot' and 'Desert Look' were planted in pots with bark, cocochip, and peatmoss. The plants were treated with 2, 4, and 6 g of slow release fertilizer. The plant growth characteristics were investigated in the first and second years during production period of three years. The medium characteristics and mineral nutrient content of the leaves were also examined in the second year. In the first year, the plant growth of 'Desert Look' was improved in all peatmoss treatments more than bark. 'Honey Hot' showed the highest plant growth values in the bark treatment. In the second year, the plant growth of the two cultivars was improved in peatmoss. Cocochip treatments showed the lower plant growth values than bark and peatmoss in the first and second year. There was no significant difference among fertilizer amounts in all the media. The higher CEC values of peatmoss medium resulted to higher capacity to hold more nutrients than bark, and the nutrient retention of the peatmoss improved the plant growth. The higher K and Ca contents in the leaves would contribute to improve the plant growth. Consequently, it would be possible to use peatmoss instead of bark for Cymbidium young plants, but there must be always attention to appropriately water the medium and manage the moisture.

Growth Damage and Alteration of Cellular Tissue of Barley Infected by Barley yellow mosaic virus (보리호위축병 (Barley yellow mosaic virus)에 의한 보리의 생육 피해 및 세포학적 변화)

  • Park, Jong-Chul;Lee, Jae-Dong;Seo, Jae-Hwan;Kim, Yang-Kil;Jeong, Seon-Gi;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • The damage of plant growth and alteration of cellular tissues of barley infected by Barley yellow mosaic virus (BaYMV) was explored. The infected plots significantly damaged in all of measured factors by the disease. In severely diseased plant, the viral infection affected on plant growth like as shorten culm length about 25cm, 36% constrained ratio, comparing to healthy. The yield decreased over 70% in diseased plots by fewer numbers of spike and kernel per square meter and spike, respectively. BaYMV constructed typical inclusion body like a pinwheel type inside barley leaves, and the infection affected on cellular elongation or growth not cell division in examined three parts as stem, neck of panicle and node, related to dwarfness of infected barley. The stem tissues were most severely affected on cell growth as restrained epidermis cell length in diameter and vascular bundle size. In neck of panicle tissues, distribution and size of tissues of fiber and cortex parts, respectively, showed differences between healthy and infected plants. In node part, healthy plant showed bigger tissue size as 1.5 times than infected plant. Theses results suggest that BaYMV infection could affect on the cell growth not cell division, and which resulted shorten culm length in plant growth and decreased yield, finally.

Effects of Plant Growth Regulators on Seed Germination and Seedling Growth of Mountain Mulberry Seeds (Morus bombycis Koidz) (식물생장조절물질이 산뽕나무 종자의 발아 및 유묘생장에 미치는 영향)

  • Song, Min-Jeong;Kim, Kyung-Hoon;Hur, Young-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.101-109
    • /
    • 2016
  • This is the fundamental research on restoring damaged vegetation areas in the vicinity of DMZ using local native plant species. This research is aimed at identifying effective plant growth regulators (PGR) for seed germination and seedling growth of mountain mulberry, and developing effective methods for managing its germination and growth. Mountain mulberry seeds were collected from the regions in the DMZ vicinity, and tests with seven treatments using four PGRs including $GA_3$, kinetin, ABA and NAA, were conducted. The germination rate was calculated in two different ways of both in a growth chamber and in a greenhouse after seven days observation, and the growth characters such as leaf width/length, seedling width/length and fresh/dry weight, have been surveyed in a greenhouse for three months. Although in the growth chamber the highest germination rate was shown at a group with the kinetin treatment, it was not significantly different to that of the control group. Groups with ABA or NAA presented relatively low germination rates. As for the greenhouse test, the germination rates of all groups ranged 20~30% without significant difference each other, the reason of which might be due to low absorption by the effect of a soil drench method used in this study. The entire growth characters with the treatments of $2.15mg{\cdot}L^{-1}$ of kinetin and $10mg{\cdot}L^{-1}$ of $GA_3$ were significantly different to the control. NAA treatment only showed better growth of seedling width compared to the control. Consequently, the most effective PGRs for the germination and growth of mountain mulberry near the DMZ was kinetin. Further research on examining the most effective concentration of them was needed.

Growth promotion and root development of Nicotiana tabacum L. by plant growth promoting fungi (PGPF) (식물 생장 촉진 진균에 의한 담배의 생장 촉진과 뿌리 발달)

  • Hong, Eunhye;Lee, Jinok;Kim, Sujung;Nie, Hualin;Kim, Young-Nam;Kim, Jiseong;Kim, Sunhyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Plant growth-promoting microorganisms promote plant growth by supplying nutrients to roots and interacting with the intrinsic factors in plants through volatile organic compounds (VOCs). In this study, we evaluated the effect of UOS, plant growth-promoting fungi (PGPF) isolated from previous study, on the growth of Nicotiana tabacum L. var Xanthi nc. Phylogenetic analysis and GC-MS were used to identify the fungal species and the VOCs emitted by the UOS, respectively. The fresh weight of UOS-treated Nicotiana tabacum L. was 3.8 and 4.2-fold higher than that of the control groups grown in vertical and I-plates, respectively. Moreover, in the UOS-treated plants, the length of the primary root was half and the number of lateral roots were twice compared to those in control plants. The UOS was identified as Phoma sp. by studying spore and mycelial morphology and using phylogenetic analysis. GC-MS revealed that the VOC emitted by the UOS was hexamethylcyclotrisiloxane (D3). These results suggest that the UOS of Phoma sp. influences plant growth and root development through D3. We expect this UOS and its VOC, D3 to be utilized in the future to increase growth and enhance yield for other plants.

Exploring the role and characterization of Burkholderia cepacia CD2: a promising eco-friendly microbial fertilizer isolated from long-term chemical fertilizer-free soil

  • HyunWoo Son;Justina Klingaite;Sihyun Park;Jae-Ho Shin
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.394-403
    • /
    • 2023
  • In the pursuit of sustainable and environmentally-friendly agricultural practices, we conducted an extensive study on the rhizosphere bacteria inhabiting soils that have been devoid of chemical fertilizers for an extended period exceeding 40 years. Through this investigation, we isolated a total of 80 species of plant growth-promoting rhizosphere bacteria and assessed their potential to enhance plant growth. Among these isolates, Burkholderia cepacia CD2 displayed remarkable plant growth-promoting activity, making it an optimal candidate for further analysis. Burkholderia cepacia CD2 exhibited a range of beneficial characteristics conducive to plant growth, including phosphate solubilization, siderophore production, denitrification, nitrate utilization, and urease activity. These attributes are well-known to positively influence the growth and development of plants. To validate the taxonomic classification of the strain, 16S rRNA gene sequencing confirmed its placement within the Burkholderia genus, providing further insights into its phylogenetic relationship. To delve deeper into the potential mechanisms underlying its plant growth-promoting properties, we sought to confirm the presence of specific genes associated with plant growth promotion in CD2. To achieve this, whole genome sequencing (WGS) was performed by Plasmidsaurus Inc. (USA) utilizing Oxford Nanopore technology (Abingdon, UK). The WGS analysis of the genome of CD2 revealed the existence of a subsystem function, which is thought to be a pivotal factor contributing to improved plant growth. Based on these findings, it can be concluded that Burkholderia cepacia CD2 has the potential to serve as a microbial fertilizer, offering a sustainable alternative to chemical fertilizers.

Effects of Flavonoids on Pollen Tube Growth in Arabidopsis thaliana

  • Kim, Young-Soon;Song, Kyu-Sang;Cheong, Hyeon-Sook
    • Journal of Plant Biology
    • /
    • v.39 no.4
    • /
    • pp.273-278
    • /
    • 1996
  • Arabidopsis mutants deficient in flavonoid and sinapate ester (tt4 and fah1-7, respectively) were evaluated in vivo and in vitro to study the possible role of flavonoid compounds in pollen tube growth. In vivo, we investigated pollen tube growth in the pistils of the mutants and wild type(Ler). The growth of pollen tubes was significantly different among the three genotypes. In the fal1-7 pistils, the tubes grew to a greater length relative to those of the wild type or tt4. To examine in vitro pollen tube growth, a solid medium was devised for pollen germination and subsequent growth. In vitro, the identical result was obtained; fahl-7 pollens developed the longest tubes and elongated most rapidly. Therefore, the growth response of pollen tubes to phenolic compounds was examined by adding quercetin or sinapate ester in various concentrations to the media. Quercetin enhanced both germination rate and tube growth in the pollens of the mutants and the wild type, especially in tt4. In contrast, sinapate ester inhibits pollen germination and pollen tube growth in three genotypes. These results suggest that flavonoids and related phenolic compounds have physiological role in the plant reproductive system.

  • PDF

Plant Growth-promoting Activity of Acremonium strictum MJN1 Isolated from Roots of Panax ginseng

  • Lim, Hyung-Bum;Chung, Yang-Jo;Bae, Ju-Yun;Kim, Dong-Jin;Kwon, Hyung-Jin;Lee, In Hyung;Chung, Byung-Chul;Lee, Woong-Sang;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.104-108
    • /
    • 2000
  • The plant growth-promoting activity of Acremonium strictum MJN1 isolated from roots of Panox ginseng was explored. The myceliaI extract of A. strictum MJN1 enhanced the rice seedling growth by 14.5 and 9.0% in the dried weight of shoots and roots, and the growth of red pepper by 54 and 85% in the top length and the dried weight in pot experiments, respectively. The plant growth-promoting substances in the myceliaI extract of Acremonium strictum MJN1 were identified as D-adenosine and glycerol. Both commercial D-adenosine and glycerol also promoted significantly the rice seedling growth but, unlike the mycelial extract of A. strictum MJN1, hardly affected the yields of plants grown in pots or field. Therefore, it is possible that other plant growth-promoting substances are produced by A. strictum MJN1. However, this study shows that A. strictum MJN1 has a great potential as a biofertilizer.

  • PDF