• Title/Summary/Keyword: Plant Construction site

Search Result 225, Processing Time 0.023 seconds

Applicability of Safe Blast Vibration Limits to the Blasting Work near Safety Related Structures (안전관련 구조물 근접시공시 발파진동 허용기준의 적용성에 관하여)

  • 류창하;서우춘;정소걸;이종림;주광호;이대수
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.287-296
    • /
    • 1994
  • Safety-related structures of power plants have to be protected against the effects of possible hazards and natural phenomena. Earthquakes are considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibratons are not. Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants. In this paper, discussed is applicability of existing vibration standards and industrial codes to the blasting works near safety related structures. Also evaluated are the parameters for the safe vibration limits such as measure of vibration level, frequency consideration, structure response, propagation equation, etc.

  • PDF

Estimation of energy self-sufficiency in municipal wastewater treatment plant using simulated solar photovoltaic performance (태양광발전시스템 성능 시뮬레이션을 통한 하수처리장 에너지자립율 산정)

  • An, Young-Sub;Kim, Sung-Tae;Chae, Kyu-Jung;Kang, Ji-Hoon;Yang, Hee-Jung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.291-296
    • /
    • 2011
  • This paper presents energy self-sufficiency simulated in municipal wastewater treatment plants (WWTPs) by adopting solar energy production systems that vary with installation conditions. Relative to the national average energy consumption in WWTPs, the employment of 100 kW photovoltaics (PVs) was simulated to achieve 2.75% of energy self-sufficiency. The simulated results suggested that the installation of PVs toward South or South west would produce the highest energy self-sufficiency in WWTPs. When super-hydrophilic coating was employed in the conventional PVs, 5% of additional solar energy production was achievable as compared to uncoated conventional PVs. When 100 kW of PVs were installed in a future test-bed site, Kihyeung Respida located in Yougin, Sourth Korea, the energy self-sufficiency by solar energy was simulated to be 1.77% (2010). The simulated energy self-sufficiency by azimuth(direction) will be useful reference for practitioners in designing the solar PV systems in the WWTPs.

  • PDF

Measurement of Individuals' Emotional Stress Responses to Construction Noise through Analysis of Human Brain Waves

  • Hwang, Sungjoo;Jebelli, Houtan;Lee, Sungchan;Chung, Sehwan;Lee, SangHyun
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.237-242
    • /
    • 2020
  • Construction noise is among the most critical stressors that adversely affect the quality of life of the people residing near construction sites. Many countries strictly regulate construction noise based on sound pressure levels, as well as timeslots and type of construction equipment. However, individuals react differently to noise, and their tolerance to noise levels varies, which should be considered when regulating construction noise. Although studies have attempted to analyze individuals' stress responses to construction noise, the lack of quantitative methods to measure stress has limited our understanding of individuals' stress responses to noise. Therefore, the authors proposed a quantitative stress measurement framework with a wearable electroencephalogram (EEG) sensor to decipher human brain wave patterns caused by diverse construction stressors (e.g., worksite hazards). This present study extends this framework to investigate the feasibility of using the wearable EEG sensor to measure individuals' emotional stress responses to construction noise in a laboratory setting. EEG data were collected from three subjects exposed to different construction noises (e.g., tonal vs. impulsive noises, different sound pressure levels) recorded at real construction sites. Simultaneously, the subjects' perceived stress levels against these noises were measured. The results indicate that the wearable EEG sensor can help understand diverse individuals' stress responses to nearby construction noises. This research provides a more quantitative means for measuring the impact of the noise generated at a construction site on neighboring communities, which can help frame more reasonable construction noise regulations that consider various types of residents in urban areas.

  • PDF

Experimental Study on High Strength and high Flowable Concrete Filled Steel Tube for Practical Construction Application (합성강관 충전용 고강도-초유동 콘크리트의 현장적용을 위한 실험적 연구)

  • 윤영수;이승훈;성상래;백승준
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.151-161
    • /
    • 1996
  • This paper presents a series of tests to produce the h~gh quality concrete to be filled Inside the steel tube columns. Thls concrete filled steel tube system requires not only the high strength, but a150 the flowable concrete. Laboratory test has been performed to clarlfy the material characteristics and to produce the optlmal mix design proportion. Full scale site mock up test has been then carried out to slnlulate the actual construct~on conditions including the product~on of concrete at the rermcon batch plant, transportation to the construction site, proper workabil~ ty and man power required , 4ddit1onal mock up test has finally been performec to irivesti gate any unfavorable construction s~tuatioils since the actual concrete placement has been sched uled in cold weather period, so that the high quality concrete construction is convinced to be successfully carried out.

Strength Evaluation of the Plant Facility for Fluid Machinery Using Schmidt Hammer in Cold Regions (극한지에서의 유체기계를 위한 플랜트 설비구조물의 비파괴 건전도 평가)

  • Hong, Seung-Seo;Kim, YoungSeok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.25-28
    • /
    • 2016
  • The Schmidt hammer test is one of the best nondestructive tests to measure the strength without breaking structures, which has been used to measure the strength of concrete structures in a simple way at construction sites. However, the future research is needed to apply Schmidt hammer in cold regions. This study is intended to investigate the correlation between unconfined compression test result of the oil storage facilities foundation taken at the King Sejong Antarctic Station and Schmidt hammer test result at the sample-taking site. Also, the equation for uniaxial compression strength using Schmidt hammer rebound value is proposed.

A Process for Structural Design of Form System for in-situ Production of Green Frame (그린프레임 현장생산용 거푸집 시스템 개발을 위한 구조설계 절차)

  • Lim, Chae-Yeon;Kim, Keun-Ho;Na, Young-Ju;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.29-30
    • /
    • 2012
  • The precast concrete column-beam structure, Green Frame, allows the main structural members such as precast concrete column and beam to be produced on the site, resulting in a reduction of transportation cost and the margin of plant. However, existing plywood from for in-situ production of precast concrete members has problems like putting in inordinate human resource, falling-off in quality and workability. To solve those problems, form system for in-situ production of precast concrete members shall be developed. In this regard, this study aims to analyze the structural concept of from system for in-situ production. The result of this study will use for development of form system for in-situ production.

  • PDF

An Analysis of Influence Factors on Insitu-production and Installation Schedule of Composite Precast Concrete Members (합성 PC 부재의 현장생산 및 설치 공정계획의 영향요소 분석)

  • Lim, Chaeyeon;Kim, Sun Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.176-177
    • /
    • 2013
  • The composite PC rahmen structure, called Green Frame, allows the main structural members such as PC column and beam to be produced on the site, resulting in a reduction of PC member transportation cost and the margin of PC plant (operation cost and profit), making it more economic than the bearing wall structure. To apply the Green Frame to practice, not only installation but also insitu-production process should be considered. Therefore, this study analyse the influence factors on insitu-production and installation schedule of composite precast concrete members. The results shall be used as basic criteria on the planning of insitu-production and installation of Green Frame.

  • PDF

Checklist Development for Prevention of Safety Accidents in Form Work in Small and Medium Sized Construction Sites (중소규모 건설현장의 거푸집 공사 안전사고 예방을 위한 체크리스트 개발)

  • Cho, Ye-Rim;Shin, Yoon-Seok;Shin, Jae-Kwon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.587-594
    • /
    • 2017
  • The construction industry generates the greatest number of disasters. Laborer injury at construction sites is mostly reported by small and mid-sized construction sites. Moreover, of the injuries, the greatest number is related to formwork. The objective of this study is to propose a checklist of the risk factors of formwork, in which industrial injuries occur most frequently in small and mid-sized construction sites, with which safety management can be done thoroughly. Risk factors and preventive measures are derived by analyzing 9,396 industrial disasters occurring at construction sites in Korea. The checklist drawn in this study was reviewed by five specialists in safety management, and applied to construction sites to verify its applicability. In a result, applying the checklist to the site showed that the safety management system of small and medium-sized construction sites were insufficient. It is expected to contribute to the effective safety management of small and mid-sized construction sites.

Estimating Relative Risk Level of Construction Work (건설공사 상대적 위험도 산정)

  • Son, Ki-Sang;Yang, Hak-Soo;Gal, Won-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.53-59
    • /
    • 2006
  • Standard safety management costs can not be applied to each site with same rate, it is very difficult, because it depends on the experience, work method, work kind, work progress schedule, and hazard level of each construction company. Therefore, this study is to find out hazard level of each work kinds through questionnaire and interview and investigate analyze the status which standard safety management costs have been used. Also, this study is to show reasonable rates of standard safety management costs in construction industry and to set up countermeasures against those problem after reviewing its status in korea with in Japan and Europe. The domestic system of standard safety management costs is not considered in the foreign country, while only related subjective items have been investigated and evaluated for this study. This study is to investigate eleven project kinds of domestic system, first, and to investigate eleven items of apartment bldg, office, civil work such as bridge, tunnel, dam, plant etc, secondly. Additionally, three items of gymnasium, railway, particular steel tower are investigated in this study. Also this study is to investigate and analyze performed costs of presently processing worker finished work so that it shows a new reasonable rate against standard safety management costs in construction industry, in order to make basial data and material to be systemized.

Prediction Model of Construction Safety Accidents using Decision Tree Technique (의사결정나무기법을 이용한 건설재해 사전 예측모델 개발)

  • Cho, Yerim;Kim, Yeon-Choel;Shin, Yoonseok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.295-303
    • /
    • 2017
  • Over the past 7 years, the number of victims of construction disasters has been gradually increasing. Compared with projects in other industries, construction projects are highly exposed to safety risks. For this reason, the research methods of predicting and managing the risk of construction disasters are urgently needed that can be applied to a construction site. This study aims to propose a prediction model for a construction disaster using the decision tree technique. The developed the model is reviewed the applicability by evaluating its accuracy based on disaster data. The top three of the prediction values obtained from the proposed model were enumerated, and then the cumulative accuracy were also calculated. The prediction accuracy was 40 percent for the first value, but the cumulative accuracy was 80 percent. Thus, as more disaster data was accumulated, the cumulative accuracy appeared to be higher. If utilized in construction sites, the model proposed in this study would contribute to a reduction in the rate of construction disasters.