• Title/Summary/Keyword: Plant Concept Optimization

Search Result 23, Processing Time 0.042 seconds

Power and Efficiency Optimization through Exergy Analysis of Power Plant (발전 플랜트의 엑서지 해석으로부터 발전량 및 발전효율 최적화)

  • Kim, Deok-Jin;Lee, Jae-Byoung;Kang, Su-Hwan
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.43-47
    • /
    • 2013
  • Even if an expert who has majored energy engineering, it is a difficult concept to understand power output optimization and power efficiency optimization. In this study a diagram applying thermodynamic state value as specific exergy and exergy ratio was developed. Although general peoples who did not major energy engineering can be easily understand the concept of power output optimization and power efficiency through the developed diagram. A represented property that can identify the performance of power plant is the main steam temperature and pressure. At the developed diagram the maximum power output line and maximum power efficiency line are shown according to the temperature and pressure of main steam. Therefore we can identify how much a power plant approach to maximum power output and maximum power efficiency.

  • PDF

Annual Energy Production Maximization for Tidal Power Plants with Evolutionary Algorithms

  • Kontoleontos, Evgenia;Weissenberger, Simon
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.264-273
    • /
    • 2017
  • In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an AEP optimization tool based on Evolutionary Algorithms was developed by ANDRITZ HYDRO. This tool can simulate all operating modes of the units (bi-directional turbine, pump and sluicing mode) and provide the optimal plant operation that maximizes the AEP to the control system. For the Swansea Bay Tidal Power Plant, the AEP optimization evaluated all different hydraulic and operating concepts and defined the optimal concept that led to a significant AEP increase. A comparison between the optimal plant operation provided by the AEP optimization and the full load operating strategy is presented in the paper, highlighting the advantage of the method in providing the maximum AEP.

Optimization of Green Ammonia Production Facility Configuration in Australia for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.269-276
    • /
    • 2024
  • Many countries across the world are making efforts beyond reducing CO2 levels and declaring 'net zero,' which aims to cut greenhouse gas emissions to zero by not emitting any carbon or capturing carbon, by 2050. Hydrogen is considered a key energy source to achieve carbon neutrality goals. Korean companies are also interested in building overseas green ammonia production plants and importing hydrogen into Korea in the form of ammonia. Green hydrogen production uses renewable energy sources such as solar and wind power, but the variability of power production poses challenges in plant design. Therefore, optimization of the configuration of a green ammonia production plant using renewable energy is expected to contribute as basic information for securing the economic feasibility of green ammonia production.

A Study on an Optimization of Welding Process Parameters by using an Analytic Solution for the Welding Angular Distortion (용접 각 변형량 해석해를 이용한 용접 공정변수 최적화에 관한 연구)

  • 이세환
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.42-48
    • /
    • 2003
  • Welding distortion is a current issue in many industrial parts, especially for heavy industry such as shipbuilding, plant industry. The welding process has many processing parameters influencing welding angular distortion such as heat input power, welding speed, gas flow rate, plate thickness and the welded material properties, etc. In this work, the conventional local minimization concept was applied to find a set of optimum welding process parameters, consisted of welding speed, plate thickness and heat input, for a minimum angular distortion. An analytic solution for welding angular distortion, which is based on laminated plate theory, was also applied to investigate and optimize the welding process parameters. The optimized process parameters and the angular distortion for various parametric conditions could be easily found by using the local minimum concept.

Sensitivity Analysis on the Priority Order of the Radiological Worker Allocation Model using Goal Programming

  • Jung, Hai-Yong;Lee, Kun-Jai
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.577-582
    • /
    • 1998
  • In nuclear power plant, it has been the important object to reduce the occupational radiation exposure (ORE). Recently, the optimization concept of management science has been studied to reduce the ORE in nuclear power plant. In optimization of the worker allocation, the collective dose, working time, individual dose, an total number of worker must be considered and their priority orders must be thought because the main constraint is necessary for determining the constraints variable of the radiological worker allocation problem. The ultimate object of this study s to look into the change of the optimal allocation of the radiological worker as priority order changes. In this study, the priority order is the characteristic of goal programming that is a kind of multi-objective linear programming. From a result of study using goal programming, the total number of worker and collective dose of worker have changed as the priority order has changed and the collective dose limit have played an important role in reducing the ORE.

  • PDF

Concept Selection of NPP Construction Delay Risk Assessment Methodology Using Systems Engineering Approach

  • Hossen, Muhammed Mufazzal;Kang, Sunkoo;Jung, JC;Kim, Jonghyun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.9-24
    • /
    • 2015
  • Construction industry faces a lot of inherent uncertainties and issues and the construction phase of nuclear power project is not free from this risk. This paper investigates promising methodologies to be used on nuclear power plant (NPP) construction schedule delay risk assessment by using entry level systems engineering approach. This study contains how the initial concept for the risk assessment methodology has been developed. In this point of view, this work structured on three main phases: needs analysis (NA), concept exploration (CE), and concept definition (CD) through systems engineering (SE) approach. Traditionally, the SE process is applied to technical development programs but this study opens up a new avenue that SE can also be successfully applied to the development and optimization of the risk assessment model. This study provides a rational and systematic process for developing and selecting the best risk assessment model. This paper selects analytic hierarchy process (AHP) method to assess NPP construction schedule delay risk for international project. As conclusion, the proposed concept and selected method can discriminate successfully and clearly among schedule delay risk assessment methods.

A Study on the Availability Assessment Method for Instrumentation and Control System of Nuclear Power Plant (원자력발전소의 제어계측 시스템에 대한 가용도 평가 방법 연구)

  • Lee, Dong-Hee;Nam, Kyung-H.
    • Journal of Applied Reliability
    • /
    • v.10 no.2
    • /
    • pp.149-160
    • /
    • 2010
  • This paper presents a study of an availability evaluation for I&C(Instrumentation and Control) System which it applied for nuclear power plant. The system availability assessment have been implemented to the reactor protection system by the adoption of Markov process. Results are satisfied to the requirement of EPRI and APR1400. Based on the research of I&C system assessment, it will contribute to improve the availability of system and impact the design concept with new design optimization.

Motion and Sloshing Analysis for New Concept of Offshore Storage Unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2002
  • A New concept for the LNG-FPSO ship, with moonpool and bilge step in bottom, is proposed. This concept is investigated with regard to motion reduction and sloshing phenomena of the cargo and operation tanks. The principal dimensions of the ship are $L\timesb B\times D\times t(design)=270.0\times51.0\times32.32\times13.7(m)$, with a total cargo capacity of 161KT; a 98% loading condition is considered for this study. The moonpools and rectangular step at the bilge have been designed for the purpose of decreasing the motion within the tank. For the motion analysis, linearized three-dimensional diffraction theory, with the simplified boundary condition was used. The six-degree of freedom coupled motion responses were calculated for the LNG-FPSO ship. Viscous effects on the roll motion responses of a vessel were taken into account in this calculation program, using an empirical formula suggested by Himeno(1981). The case study for the moonpool size has been conducted using theoretical estimation and the experimental method. For the optimization of the moonpool size and effect of the bilge step, 9 cases of its size, both with and without bilge step, were involved in the study. no motion responses, especially roll motion, for the designed LNG-FPSO ships are much lower than those of other drill ships and shuttle tankers. The limit criterions are satisfied. To check the cargo tank and operation tank sizes, we performed a sloshing analysis in the irregular waves which focuses on the pressure distribution on the tank wall and the time history of pressure and free surface for No.2 and 5 tanks of LNG-FPSO with chamfers. Finally, optimum tank sire was estimated.

  • PDF

Performance Evaluation and Optimization of Hydrogen Liquefaction Process Using the Liquid Air for Pre-Cooling (액화공기(Liquid Air) 예냉기반 수소액화공정 성능 해석 및 최적화)

  • PARK, SUNGHO;AHN, JUNKEON;RYU, JUYEOL;KO, AREUM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.490-498
    • /
    • 2019
  • The intermittent electric power supply of renewable energy can have extremely negative effect on power grid, so long-term and large-scale storage for energy released from renewable energy source is required for ensuring a stable supply of electric power. Power to gas which can convert and store the surplus electric power as hydrogen through water electrolysis is being actively studied in response to increasing supply of renewable energy. In this paper, we proposed the novel concept of hydrogen liquefaction process combined with pre-cooling process using the liquid air. It is that hydrogen converted from surplus electric power of renewable energy was liquefied through the hydrogen liquefaction process and vaporization heat of liquid hydrogen was conversely recovered to liquid air from ambient air. Moreover, Comparisons of specific energy consumption (kWh/kg) saved for using the liquid air pre-cooling was quantitatively conducted through the performance analysis. Consequently, about 12% of specific energy consumption of hydrogen liquefaction process was reduced with introducing liquid air for pre-cooling and optimal design point of helium Brayton cycle was identified by sensitivity analysis on change of compression/expansion ratio.

A Model Predictive Controller for Nuclear Reactor Power

  • Na Man Gyun;Shin Sun Ho;Kim Whee Cheol
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.399-411
    • /
    • 2003
  • A model predictive control method is applied to design an automatic controller for thermal power control in a reactor core. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the second optimal control input is not implemented and the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize the difference between the output and the desired output and the variation of the control rod position. The nonlinear PWR plant model (a nonlinear point kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance equations) is used to verify the proposed controller of reactor power. And a controller design model used for designing the model predictive controller is obtained by applying a parameter estimation algorithm at an initial stage. From results of numerical simulation to check the controllability of the proposed controller at the $5\%/min$ ramp increase or decrease of a desired load and its $10\%$ step increase or decrease which are design requirements, the performances of this controller are proved to be excellent.