• Title/Summary/Keyword: Plant 4D

Search Result 2,656, Processing Time 0.027 seconds

Photosynthesis and Growth of Southern-type Garlic (Allium sativum L.) in Response to Elevated Temperatures in a Temperature Gradient Tunnel (온도구배터널 내 상승온도에 의한 난지형 마늘(Allium sativum L.)의 광합성 및 생육 특성의 변화)

  • Oh, Seo-Young;Moon, Kyung Hwan;Song, Eun Young;Shin, Minji;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.250-260
    • /
    • 2019
  • This study assessed clove germination, shoot growth, photosynthesis and bulb development of southern-type garlic (Allium sativum L.) in a temperature gradient tunnel (TGT), to examine the impacts of increases in temperature on the growth of garlic and find a way to minimize them. The temperatures in the middle and outlet of the TGT were 3.2℃ and 5.8℃ higher, respectively, than the ambient temperature at the tunnel inlet. The germination of garlic cloves was late at temperatures of ambient+3℃ (in the middle of the TGT) and ambient+6℃ (at the outlet) than at ambient temperature (at the inlet). However, bolting and the timing of maximum leaf number per plant were faster at ambient+3℃ or +6℃ than at ambient temperature. Shoot growth was generally greater at ambient temperature. Bulb growth did not significantly differ according to cultivation temperatures, but fresh and dry weights were slightly higher at ambient temperature and ambient+3℃ in the late growth stage. The photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E) were higher at ambient+3℃ than at ambient temperature. Furthermore, at ambient+3℃, the net photosynthetic rate (Amax) was high, while the dark respiration rate (Rd) was low. At ambient temperature and ambient+3℃, bulb development was healthier, resulting in better productivity and more commercial bulbs, while at ambient+6℃, the bulbs were small and secondary cloves developed, resulting in low commercial value. Therefore, at elevated temperatures caused by global warming, it is necessary to meet the low-temperature requirements before clove sowing, or to delay the sowing time, to improve germination rate and increase yield. The harvest should also be advanced to escape high-temperature stress in the bulb development stage.

Health Condition Assessment Using the Riparian Vegetation Index and Vegetation Analysis of Geumgang mainstream and Mihocheon (수변식생지수를 이용한 금강본류와 미호천의 건강성 평가 및 식생분석)

  • Lee, Seung-Yeon;Jang, Rae-Ha;Han, Young-Sub;Jung, Young-Ho;Lee, Soo-In;Lee, Eung-Pill;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.105-117
    • /
    • 2018
  • This study conducted health assessment and multivariate vegetation analysis using the riparian vegetation index in 30 sites of the Geumgang mainstream and Mihocheon to obtain practical data on the river management of the Geumgang. The result showed that the number of plant communities was 54. The flora was 75 families, 185 genera, 243 species, 2 subspecies, 21 varieties, 2 varieties, and 268 taxa. The riparian vegetation index was 38.3 (3.3; G-D1 ~ 66.7; G-U2, G-U4, and G-M3), and the health of the rivers in this area was evaluated as normal (grade C). The health of rivers was the highest in the upper stream of Geumgang mainstream and lowest in the downstream of Geumgang mainstream. The relationship between riparian vegetation index and chlorophyll-a content was low. The riparian vegetation was divided into five groups of Digitaria ciliaris colony group, Salix gracilistyla colony group, Erigeron annuus colony group, the group dominated by Humulus japonicus, Salix koreensis, Miscanthus sacchariflorus, and Phragmites japonica colonies, and the group dominated by Conyza canadensis and Echinochloa crusgalli var. echinata colonies. They had the similar health conditions. The CCA analysis showed that the environmental factors affecting the distribution of vegetation were physical factors such as vegetation area, artificial structure area, waterway area, branch width, channel width, and bank height and the biological factors such as the number of species. As such, it is necessary to maintain the health condition through continuous monitoring where the health condition is high and to apply active measures such as ecological restoration where the health condition is low.

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

  • Choi, Eun-Young;Jeong, Young-Ae;An, Seung-Hyun;Jang, Dong-Cheol;Kim, Dae-Hyun;Lee, Dong-Soo;Kwon, Jin-Kyung;Woo, Young-Hoe
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.401-409
    • /
    • 2021
  • This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (high-temperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200µmol·m-2·s-1 to 1500µmol·m-2·s-1} and leaf temperatures (20℃ to 35℃) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30℃), and the optimum leaf temperature for the estimated Jmax was 30℃. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400µmol·m-2·s-1 of PAR, at 800ppm for 600 and 800µmol·m-2·s-1 of PAR, at 1000ppm for 1000µmol of PAR, and at 1500ppm for 1200 and 1500µmol·m-2·s-1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.

Effect of Nutrient Solution Strength and Duration of Nutrient Starvation on Growth and Flowering of Two Strawberry Cultivars (양액 강도와 공급 중단 시기에 따른 삽목번식한 2품종 딸기의 생장과 개화 반응)

  • Kang, Dong Il;Jeong, Hai Kyoung;Park, Yoo Gyeong;Hwang, Seung Jae;Jeong, Byoung Ryong
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.19-28
    • /
    • 2019
  • This study was conducted to investigate the effect of nutrient solution strength and duration of nutrient starvation on the growth and development of strawberry (Fragaria x ananassa Duch.) 'Maehyang' and 'Sulhyang' at the flowering stage. Cuttings of runner plants were stuck on November 23th, 2017 and were covered with a layer of black plastic film to block light from penetrating and keep the relative humidity high. The black plastic film was removed after 16 days and rooted plants were cultivated for one month with irrigation of water. The Yamazaki nutrient solution with an electrical conductivity (EC) of 1.85 or 3.71 dS·m-1 (1x or 2x ionic strength, respectively) and pH 5.55 was fed to plants after either 0 (control), 1, 3 or 5 weeks of nutrient starvation to the end of experiment. Plant height in both cultivars decreased gradually with the increase in duration of nutritional starvation. The earlier the nutritional starvation started, the smaller the shoot fresh weight of 'Maehyang'. Hence the greatest shoot fresh weight was obtained in the control which was supplied with the nutrient solution continuously. Shoot fresh weight of 'Sulhyang' was the greatest in 1x ionic strength and one week of nutrient starvation before planting. Although number of flowers on the first flower cluster of 'Maehyang' and 'Sulhyang' showed no significant differences, 'Maehyang' had the greatest number of flowers in the 2x ionic strength solution and one week of nutrient starvation before planting, while 'Sulhyang' had that in the 1x ionic strength treatment. These results suggest that it is considered effective to supply a nutrient solution at a low concentration for a short period of time for increasing the number of flower differentiated on the first flower cluster in both cultivars.

Effects of Photoperiod and Light Intensity on the Growth and Glucosinolates Content of Three Brassicaceae Species in a Plant Factory (식물공장에서 광주기 및 광강도가 십자화과 3종의 생육과 글루코시놀레이트 함량에 미치는 영향)

  • Kim, Sunwoo;Bok, Gwonjeong;Shin, Juhyung;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.416-422
    • /
    • 2022
  • This study was conducted to investigate the effect of each light intensity and photoperiod combination on the growth and glucosinolates (GSLs) content of three species of Brassicaceae plants under the same daily light integral (DLI) conditions. Seeds of leaf mustard (Brassica juncea (L.) Czern.), red mustard(Brassica juncea L.) and kale (Brassica oleracea L. var. acephala (DC.) Alef.) were sown in a rockwool cubes and grown for three weeks. DLI was set to 10 mol·m-2·d-1 and treated with 10h-280, 14h-200, 18h-155, 22h-127 µmol·m-2·s-1 for three weeks. As a result at 14h-200 µmol·m-2·s-1 treatment, shoot fresh/dry weight, the number of leaves, and leaf area were increased in leaf mustard and kale but there was no significant difference in other treatments. In the total GSLs content, the treatment of 14h-200 µmol·m-2·s-1 increased significantly 139.95, 135.87, 154.03% compared to 10h-280, 18h-155, 22h-127 µmol·m-2·s-1 treatment in red mustard, and 14h-200 µmol·m-2·s-1 treatment increased significantly 132.96, 132.96, 134.03% compared to other treatments in kale. In red mustard, the treatment of 18h-155 µmol·m-2·s-1 showed an increase in shoot fresh/dry weight and the total GSLs contents than other photoperiods and 14h-200 µmol·m-2·s-1 treatment, the number of leaves significantly 15.62, 12.12, and 32.14% higher than other photoperiods. Since the DLI response is different depending on species even for similar Brassicaceae crops, it is necessary to get more detailed results by conducting optical light quality studies and deriving optimal DLI conditions to achieve minimum power consumption and maximum efficiency.

Microbial Hazard Analysis of Astragalus membranaceus Bunge for the Good Agricultural Practices (농산물우수관리를 위한 황기(Astragalus membranaceus Bunge)의 미생물학적 위해요소 분석)

  • Kim, Yeon Rok;Lee, Kyoung Ah;Kim, Se-Ri;Kim, Won-Il;Ryu, Song Hee;Ryu, Jae-gee;Kim, Hwang-Yong
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.3
    • /
    • pp.181-188
    • /
    • 2014
  • The objective of this study was to analyze the microbiological hazards of Astragalus membranaceus Bunge on the post-harvest processing. Samples from processing equipments (cleaner, water, cart, table, tray and packaging machine), personal hygiene (hand) and harvested crops (before washing, after washing, after sorting, and after drying) were collected from four farms (A, B, C, and D) located in Chungchengbuk-do, Korea. The samples were analyzed for sanitary indication bacteria and pathogenic bacteria. First, total aerobic bacteria and coliform in processing facilities were detected at the levels of 0.93~4.86 and 0.33~2.28 log CFU/$100cm^2$ and/mL respectively. In particular, microbial contamination in hand (5.43~6.11 and 2.52~4.12 log CFU/Hand) showed higher than processing equipments. Among the pathogenic bacteria, Bacillus cereus was detected at the levels of 0.33~2.41 log CFU/$100cm^2$, 1.48~3.27 log CFU/Hand and 0.67~3.65 log CFU/g in equipments, hands, and plants and Staphylococcus aureus were detected in cleaner, table, hand and harvested crops (before washing and after sorting) by qualitative test. Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. were not detected. These results indicated that personal hygiene and processing equipments should be managed to reduce the microbial contamination of A. membranaceus Bunge. Therefore, management system such as good agricultural practices (GAP) criteria is needed for hygienic agricultural products.

Effects of Weeds Emerged at Different Developmental Stages of Rice on Its Yield in Gangweon Province (강원지역(江原地域) 논잡초(雜草)의 시기별(時期別) 발생량(發生量)이 벼 수량(收量)에 미치는 영향(影響))

  • Kim, K.S.;An, M.H.;Chang, J.S.;Hah, B.L.;Kim, D.R.
    • Korean Journal of Weed Science
    • /
    • v.10 no.4
    • /
    • pp.269-276
    • /
    • 1990
  • Weed species belonging to the broadleaf family prevailed in the experimental sites followed by Cyperucea and grass family. In terms of life cycle, the dominant weed species were the perennial weeds rather than annual weeds. Most of weeds were emerged between 30-60days after transplanting in Chuncheon and between 40-60 days after transplanting in Hongcheon and Hoengseong areas. Among agronomic characteristics of rice affected by weed emergence were decrease of plant height by 2-4㎝, panicle number by 1.3-2.9, spkelet by 3. 7-7.5, ripening rates by 3.3-6.5%, and milled yield by 12-17%.

  • PDF

Effects of Weed Amounts Emerged at Different Developmental Stage on Rice Yield (강원지역(江原地域) 논잡초(雜草)의 시기별(時期別) 발생량(發生量)이 벼 수량(收量)에 미치는 영향(影響))

  • Kim, K.S.;An, M.H.;Chang, J.S.;Huh, B.L.;Kim, D.R.
    • Korean Journal of Weed Science
    • /
    • v.10 no.2
    • /
    • pp.83-92
    • /
    • 1990
  • Experiment was conducted to establish the weed control system on the paddy fields by investigating species, period and amount of weeds in Gangwon province. Four locations were selected for these experiments : West plain area, Chunchon(74m above the sea level), mid-mountainous area, Hongchon(300 m), high alpine area, Hoengsong(450m), and east sea area, Myungju(14m). Weed emergence was investigated 6 times from 10 days after transplanting to 60 days with 10 days interval. From the experiments stated above, the results were summarized as follows ; The identity of weed species was small in grass family, but broad-leaf family was numerous. Also the dominant weed species was generally the perenial weeds. The weed emergence was initiated from 10 days after translanting. The amounts of weed counted the most in Chunchon. A large number of weeds were emerged between 30-60 days after transplanting in Chunchon and between 40-60 days after transplanting in Hongchon and Hoengsong. Among agronomic characteristics affected by weed emergence during rice development, plant height was decreased by 2~4cm, panicle number by 1.3~2.9, spikelet by 3.7~7.5, ripening rates 3.3~6.5%, and milled yield by 12~17%, respectively.

  • PDF

Reason of Late Establishment of Barnyardgrass and Their Density Effects on Rice Yield Loss (벼 생육중기(生育中期) 피발생(發生) 원인(原因) 및 이들의 밀도(密度)에 따른 쌀수량(收量) 감소(減少))

  • Seong, K.Y.;Lee, S.B.;Ku, Y.C.;Song, D.Y.;Huh, I.P.;Kim, Y.S.
    • Korean Journal of Weed Science
    • /
    • v.17 no.4
    • /
    • pp.439-444
    • /
    • 1997
  • The causes of late establishment of barnyardgrass and their density effect on rice yield loss were examined in 1996 and 1977. Herbicide application on 5 to 15DAT(Days after transplanting) increased from 6% to 52.5%, 1988 to 1992, and their ingredient amount for barnyardgrass control decreased to 41.7-87.5% in Korea. Most late establishment of barnyardgrass in machine transplanted rice field were not late germinated but revived ones. The number of late established barnyardgrass were 0.5, 2.0 and 13.3/$m^2$, on direct seeded at May 10, and machine transplanted May 23 and June 9, individually. Relation on rice yield and the number of barnyardgrass at machine transplanted field showed highly significant equation, as y=543.3 4.7x, r=0.9039 in 1996 and y=515.8 10.4x+0.066$x^2$, $R^2$=0.9532 in 1997. Theoritical yield loss by regress equation showed 2% per one plant of barnyardgrass per $m^2$ and 5, 10, 20, 50, and 80 plants of barnyardgrass decreased rice to 10, 19, 35, 69 and 79%, individually.

  • PDF

Improvement of Herbicide Use in Crop Production. X. Interpretations in Tank - mix Use of Aciflurofen and Haloxyfop - methyl for Weeding on Late - season Cropped Soybeans (Glycine max L.) (제초제(除草劑)의 사용법(使用法) 개발(開發)을 위한 연구(硏究) - X. 만파대두(晩播大豆)의 잡초방제(雜草防除)를 위한 Acifluorfen과 Haloxyfop-methyl의 혼용효과(混用效果) 해석연구(解析硏究))

  • Guh, J.O.;Lee, K.;Kim, D.K.;Hong, S.H.
    • Korean Journal of Weed Science
    • /
    • v.5 no.1
    • /
    • pp.73-84
    • /
    • 1985
  • 25 tank-mixed combinations between Haloxyfop-methyl at 0, 0.05, 0.1, 0.15 and 0.2 kg ae/ha and Acifluorfen at 0, 0.082, 0.163, 0.245 and 0.326 kg ai/ha were applicated at post-emergence on the late-season cropped soybean(Glycine max) fields predominated by grasses and assessed on the weeding efficacy. A most abundant weed species on the experimented fields were found at September (25 species). The broadleaved weed species and sedges were successively and proportionately emerged by the control rate of grass species. From the mono-treatment of each herbicide, Haloxyfop-methyl was recognized as a highly selective one between grasses and soybean, and Acifluorfen between broadleaf weeds and soybean, respectively. By combined application with both herbicides a synergistic weeding efficacy was detected on total weed species, however antagonistic or additive on each weed groups. Among other traits of soybean, stem dry weight was influenced by weed competitions during October, number of pods per plant during August and seed yields during whole periods. For most effective and reasonable weeding, no less than 0.4 kg ai/ha of each herbicides should be applicated in combinations.

  • PDF