• Title/Summary/Keyword: Planing hull

Search Result 77, Processing Time 0.025 seconds

Evaluation of Maneuverability in Still Water of an Unmanned Surface Vehicle through Sea Trials (실선 시운전을 통한 무인수상정 정수중 조종성능 평가)

  • Jeon, Myung-Jun;Yoon, Hyeon-Kyu;Ryu, Jea-Kwan;Lee, Won-Hee;Ku, Pyung-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.253-261
    • /
    • 2021
  • This paper describes the process of evaluating maneuverability in still water of an unmanned surface vehicle based on data measured by performing sea trials. First, we set up a test scenario that is easy to analyze the maneuverability of the unmanned surface vehicle and to identify and verify the dynamics model. Since the attitude of hull varies according to the speed of the unmanned surface vehicle which has a planing hull shape, the relationship between waterjet RPM, speed and attitude is analyzed by performing straight forward tests at various speeds. The turning tests of the unmanned surface vehicle in which the waterjet angle rotates while turning are performed by changing the waterjet rotation angle under the condition of two representative speeds to analyze turning ability. The turning ability of the unmanned surface vehicle includes speed reduction, yaw rate, heel, and turing diameter at steady turning phase according to the speed and RPM.

A Study on the Basic Design and its Characteristics of 50ft-class CFRP Cruise Boat (50피트급 탄소섬유강화복합재료 크루즈 보트의 기본설계 및 특성)

  • Oh, Dae-Kyun;Lee, Chang-Woo;Jeong, Uh-Cheul;Ryu, Cheol-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.674-680
    • /
    • 2013
  • As the range of marine leisure activity gradually expands to ocean-going, a habitable cruise boat has been getting the limelight. Advanced countries in the marine leisure industry in Europe and North America have already secured their competitiveness in designing and building cruise boats by elegant design, ergonomic structure and fuel efficiency through the adoption of light-weight hull materials. In contrast, mostly small power boats are developed and built in Korea, and GFRP take up the most of hull materials. This study inquired into the design and characteristics of a 50ft-class CFRP that ocean-going is possible. The hull-form of the CFRP cruise boast were analyzed to propose a hull form for the designed ship (MMU-C.B), and based on that, the design model of the MMU-C.B was built. Finally, the MMU-C.B's characteristics of the resistance performance and hull-planing were found by comparative reviews with the results of model tests of GFRP pleasure yachts.

Initial Robust Design of Deadweight 150,000 ton Bulk Carrier (재화중량 150,000톤 산적화물선의 초기 로버스트 설계)

  • Koh, Chang-Doo;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.182-189
    • /
    • 1999
  • The robust design technology which can determine design variables getting best performance function with insensitivity to the environment noise, is an important method for improving the performance of products at low cost. Applying the robust design technology in ship design, Koh et al[10] introduced the planing hull design. This paper reports the application this technology to a 150K bulk carrier which has many design variables and shows that the robust design technology is superior to optimization technique in practical use.

  • PDF

A Study on the Resistance Characteristics of Leisure Boat According to Chine Shape (차인 형상에 따른 레저선박의 저항특성에 관한 연구)

  • Kim, Juyeol;Choi, Junho;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.566-573
    • /
    • 2017
  • The chine of high speed vessels does not only play a role in changing position when planing but also helps balancing the hull. It also has a great influence on resistance performance. However, designing a chine requires a lot of experience because it is influenced by various factors such as displacement, transom shape, draft and width. Such a design is not based on an empirical formula, but the purpose of this study is to provide basic guidelines regarding the shape of chine through calculation. This design was developed using Yacht-one, a commercial design program, and analysis was performed using Star-CCM+, also a commercial analysis program. Analysis of the hull selected in this study was carried out by Dynamic Fluid Body Interaction (DFBI) method. Analysis of the chine was carried out at chine angles of 15, 16, 17, and 19degrees, at a speed of 30knots. The result indicated that the highest trim occurred at 16 degrees among the four chine angles considered, and the highest heave occurred at 15degree. In terms of resistance performance, minimum resistance was observed at 16 degrees. Consequently, for minimum ship resistance, it is necessary to complete calculations in accordance with the chine angles, ${\pm}2$ degrees from the initial chine angle, which should be carried out a the design stage.

Desigh and Wavemaking Effect of Bulvous Bow Ship by Stream Line Tracing Method (유선추적법(流線追跡法)에 의(依)한 구상선수선형(球狀船首船型)의 계획(計劃) 및 조파효과(造波效果))

  • S.W.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.2
    • /
    • pp.19-28
    • /
    • 1973
  • This paper deals with a problem for determining the bulbous bow ship from which pertains to the study of the theoretical ship form planing method. In this paper has been determined the bulbous bow ship form which is a similar in geometric particulars with the conventional liner ship G.T.10, 000 by adopting the variable method for finding the optimum ship form by A.Y.C. Lee and the streamline tracing method by T. Inui and P.C. Pien. Each resistance performance is examined by the towing test and is compared with one another. The followings are the outcome of this study: Among the 5 type models, the bulbous bow ship form M.S. B 1120 is the most excellent for the resistance performance. The effect for the wave resistance is very sharp according to the difference of the bottom flattening of theoretical ship form. The optimum value of the bulbous bow for wave resistance can be obtained by the variable method mentioned above, and for the series of(Main hull+Bulb)opt., ${\alpha}=75/25$, the value is $f{\approx}0.11$.

  • PDF

A Study on Air Resistance and Greenhouse Gas Emissions of an Ocean Leisure Planning Boat (해양레저용 활주형선의 공기저항 및 온실 가스 배출에 대한 연구)

  • Kim, Y.S.;Hwang, S.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.202-210
    • /
    • 2013
  • As incomes increase, interest in ocean leisure picks up. As a result, a lot of research and developments on hull form design and production of planing boats, mostly used for ocean leisure, are needed. Analysis in researches on resistance of planing boats shows that resistance characteristic of planing boats is different from resistance characteristic of general boats because the former is fast, and its wetted surface is very small. Using Savitsky formula widely used in the calculation of effective horse power in shipbuildingyards, and propulsion system and engine manufacturers, this study calculated total resistance of a research planing boat. Then it analyzed the flow characteristics of the planing boat through theoretical analysis and wind tunnel experiment, and computed air resistance and lift force by changes of speed and trim angle. It also compared and analyzed result of theoretical analysis and experiment of the ratio of air resistance to total resistance under variations of velocity and trim angle. When the study is used to estimate more accurate effective horse power, it is expected to remedy abuses of unnecessarily installing high-powered engine. As nature disasters due to abnormal changes of weather increase, interest in greenhouse gas grows. International Maritime Organization (IMO) legislated Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI) to reduce ship greenhouse gas emissions. But this index will be applied to over 400 tons ships, small ships, emitting more greenhouse gases than larege ships per unit power, will dodge the regulations. Thus, this study indicated a problem by calculating greenhouse gas emissions of an ocean leisure planning boat (a small ship), and suggested the need for EEDI of small ships.

A Numerical Study on the Selection of Main Specification of the 18.5ft Bass Fishing Boat (18.5ft급 경기용 배스보트의 주요제원 선정에 관한 수치해석 연구)

  • Lim, Jun-Taek;Seo, Kwang-Cheol;Park, Geun-Hong;Kim, Sang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.945-952
    • /
    • 2018
  • Recently, bass fishing has become a marine leisure sport in Korea. There are 4 major fishing associations in Korea, and each association holds 10-15 tournaments each year. However, supply of 17 ft bass boats, which are preferred in leagues, depends 100 % on imports. In this study, we have derived the main specifications to develop the initial hull forms of a 18.5ft bass boat through statistical analysis based on mothership data. In addition, CFD numerical analysis was carried out according to deadrise angle and longitudinal center of gravity, which strongly influenced the resistance and planing performance. For numerical analysis, design speed was set to $Fn=3.284 (Re=9.858{\times}10^7)$, the deadrise angle was set from 12 to $20^{\circ}$, and the longitudinal center of gravity was set in the range of 0 to $8%L_{wL}$ from the center of buoyancy to the stern. Based on the numerical results, we first set the range of these factors by resistance performance and immersion keel length. Furthermore, using a correlation graph of Savitsky's Drag-Lift ratio, we derived the deadrise angle ($14-16^{\circ}$) and longitudinal center of gravity ($4-6%L_{wL}$).