• Title/Summary/Keyword: Planing avoidance

Search Result 7, Processing Time 0.021 seconds

Planing Avoidance Control for a Supercavitating Underwater Vehicle Based on Potential Functions (포텐셜함수 기반 초공동 수중운동체 플레이닝 회피 제어 연구)

  • Kim, Seonhong;Kim, Nakwan;Kim, Minjae;Kim, Jonghoek;Lee, Kurnchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.208-212
    • /
    • 2018
  • In this paper, we focus on planing avoidance control for a supercavitating underwater vehicle based on the potential function method. The planing margin can be calculated using the relative position between the cavity center and vehicle center at the end of the vehicle. The planing margin was transformed into a limit variable such as the pitch angle and yaw angle limit. To prevent the vehicle attitude from exceeding the limit variable, a potential function based planing envelope protection method was proposed. The planing envelope protection system overrides commands from the tracking controller, and the vehicle attitude converges to a desired angle, in which the potential function is minimized. Numerical simulations were performed to analyze the physical feasibility and performance of the proposed method. The results showed that the proposed methods eliminated the planing, allowing the vehicle to follow tracking commands.

Studies on Planing Avoidance Control for a Ventilated Supercavitating Vehicle (분사형 초공동 수중운동체의 Planing 회피에 대한 연구)

  • Park, Jongyeol;Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • Supercavitation is a technology that reduces frictional resistance of an underwater vehicle by surrounding it with bubbles. Supercavity is divided into natural supercavity and ventilated supercavity which is formed by artificially supplying gas. Planing forces are present when a section of the underwater vehicle goes outside of the cavitation region in the supercavity condition. Planing often leads to an unstable flight because it acts vertically on the body suddenly. In this paper, a relationship between the ventilation rate and the cavitation number is determined. Based on the relationship, desired cavitation number which can avoid to planing is determined and then ventilation controller is designed. The performance of the ventilation controller is verified with a depth change controller using the cavitator. Simulation results show that the ventilation controller can minimize the planing force and moment.

A Study on Intelligence Navigation for Autonomous Mobile Robot Using Fuzzy Logic Control

  • Huh, Dei-Jeung;Lee, Woo-Young;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138.5-138
    • /
    • 2001
  • The autonomous robot has the ability of obstacle avoidance and target tracking with some manufactured information. In this paper, it is shown that autonomous mobile robot can avoid fixed obstacles using the map made before and the fuzzy controller is adopted with the global path planing and the local path planing when the robot navigates. With that map sensor, information will be used when an autonomous robot navigates. This paper proves that robot can navigate through optimized route and keep the stable condition.

  • PDF

A Study on Human-Friendly Guide Robot (인간친화적인 안내 로봇 연구)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Ha, Sang-Hyung;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.9-15
    • /
    • 2006
  • The recent development in robot field shows that service robot which interacts with human and provides specific service to human has been researched continually. Especially, robot for human welfare becomes the center of public concern. At present time, guide robot is priority field of general welfare robot and helps the blind keep safe path when he walks outdoor. In this paper, guide robot provides not only collision avoidance but also the best walking direction and velocity to blind people while recognizing environment information from various kinds of sensors. In addition, it is able to provide the most safe path planing on behalf of blind people.

A study on real-time path planning and visual tracking of the micro mobile robot (소형 이동 로봇의 실시간 경로계획과 영상정보에 의한 추적제어)

  • 김은희;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.25-29
    • /
    • 1997
  • In this thesis, we construct the microrobot succor system and navigate the real-time path planning and visual tracking of each robot. The system consists robots, vision system and a host computer. Because the robots are free-ranging mobile robot, it is needed to make and gallow the path. The path is planned and controlled by a host computer, ie. Supervisory control system. In path planning, we suggest a cost function which consists of three terms. One is the smoothness of the path, another is the total distance or time, and the last one is to avoid obstacles. To minimize the cost function, we choose the parametric cubic spline and update the coefficients in real time. We perform the simulation for the path planing and obstacle avoidance and real experiment for visual tracking

  • PDF

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.

Resource Allocation Method for a Interference Mitigation in a Cellular System with Fixed Relays (고정 릴레이 기반 셀룰러 시스템에서 간섭 회피를 위한 자원 할당기법)

  • Won, Seung-Chan;Im, In-Chul;Yoon, Dong-Woen;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.829-837
    • /
    • 2008
  • A cellular system with fixed relays is considered to be a technology that can support high data transmission service to wide areas. However, either inter-cell interference or inter-sector interference that can be produced by adding relays to the cellular system with fixed relays does not guarantee high link performance to deteriorate function, so that resource allocation for avoidance of interference is very much important. In the paper, the cellular system performance with repeater relay has been compared with the cellular system performance with relay, and cell coverage expansion at the use of relay repeater has been compared. To compare, this paper has suggested resource allocation method to avoid inter-cell interference and inter-sector interference at installation of fixed relay on the cellular system. The proposed method can allocate different frequency resources on adjacent base stations and relays to reduce interference and to expand high data transmission area, and all of frequency bands are used at each sector to elevate efficiency of the frequency when base stations and relays operate simultaneously.