• 제목/요약/키워드: Planetary

검색결과 815건 처리시간 0.023초

A Distinctive Chemical Composition of the Tektites from Thailand and Vietnam, and Its Geochemical Significance (타이와 베트남에서 수집된 텍타이트의 화학조성과 지구화학적 의의)

  • Lee, Seung-Gu;Tanaka, Tsuyoshi;Asahara, Yoshihiro;Minami, Masayo
    • The Journal of the Petrological Society of Korea
    • /
    • 제26권3호
    • /
    • pp.281-295
    • /
    • 2017
  • We determined chemical compositions like abundance of major and trace elements, Sr and Nd isotope compositions for two tektites from the Thailand and Vietnam. Their chemical compositions are similar to each other, and seem to be similar to those of PAAS (Post Archean Australian Shale) rather than upper continental crust. In particular, primitive mantle-normalized spider diagrams and chondrite-normalized REE patterns for two tektites are the same, suggesting that they might be derived from the same source material. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are $0.718870{\pm}0.000008(2{\sigma}_m)$ and $0.512024{\pm}0.000012(2{\sigma}_m)$, respectively, and those from Vietnam are $0.717022{\pm}0.000008(2{\sigma}_m)$ and $0.511986{\pm}0.000013(2{\sigma}_m)$, respectively. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are slightly enriched than those of Vietnam tektite. $^{87}Sr/^{86}Sr$ ratios from the Vietnam and Thai tektites were plotted on the range of Australasian tektites reported previously. $^{143}Nd/^{144}Nd$ ratio of Vietnam tektite from this study was lower than the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite reported previously whereas that of Thai tektite was included in the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite. The geochemical characteristics from two tektites in this study indicate that they may be derived from the very similar source materials.

Earthquake impacts on hydrology: a case study from the Canterbury, New Zealand earthquakes of 2010 and 2011

  • Davie, Tim;Smith, Jeff;Scott, David;Ezzy, Tim;Cox, Simon;Rutter, Helen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.8-9
    • /
    • 2011
  • On 4 September 2010 an earthquake of magnitude 7.1 on the Richter scale occurred on the Canterbury Plains in the South Island of New Zealand. The Canterbury Plains are an area of extensive groundwater and spring fed surface water systems. Since the September earthquake there have been several thousand aftershocks (Fig. 1), the largest being a 6.3 magnitude quake which occurred close to the centre of Christchurch on 22February 2011. This second quake caused extensive damage to the city of Christchurch including the deaths of 189 people. Both of these quakes had marked hydrological impacts. Water is a vital natural resource for Canterburywith groundwater being extracted for potable supply and both ground and surface water being used extensively for agricultural and horticultural irrigation.The groundwater is of very high quality so that the city of Christchurch (population approx. 400,000) supplies untreated artesian water to the majority of households and businesses. Both earthquakes caused immediate hydrological effects, the most dramatic of which was the liquefaction of sediments and the release of shallow groundwater containing a fine grey silt-sand material. The liquefaction that occurred fitted within the empirical relationship between distance from epicentre and magnitude of quake described by Montgomery et al. (2003). . It appears that liquefaction resulted in development of discontinuities in confining layers. In some cases these appear to have been maintained by artesian pressure and continuing flow, and the springs are continuing to flow even now. In spring-fed streams there was an increase in flow that lasted for several days and in some cases flows remained high for several months afterwards although this could be linked to a very wet winter prior to the September earthquake. Analysis of the slope of baseflow recession for a spring-fed stream before and after the September earthquake shows no change, indicating no substantial change in the aquifer structure that feeds this stream.A complicating factor for consideration of river flows was that in some places the liquefaction of shallow sediments led to lateral spreading of river banks. The lateral spread lessened the channel cross section so water levels rose although the flow might not have risen accordingly. Groundwater level peaks moved both up and down, depending on the location of wells. Groundwater level changes for the two earthquakes were strongly related to the proximity to the epicentre. The February 2011 earthquake resulted in significantly larger groundwater level changes in eastern Christchurch than occurred in September 2010. In a well of similar distance from both epicentres the two events resulted in a similar sized increase in water level but the slightly slower rate of increase and the markedly slower recession recorded in the February event suggests that the well may have been partially blocked by sediment flowing into the well at depth. The effects of the February earthquake were more localised and in the area to the west of Christchurch it was the earlier earthquake that had greater impact. Many of the recorded responses have been compromised, or complicated, by damage or clogging and further inspections will need to be carried out to allow a more definitive interpretation. Nevertheless, it is reasonable to provisionally conclude that there is no clear evidence of significant change in aquifer pressures or properties. The different response of groundwater to earthquakes across the Canterbury Plains is the subject of a new research project about to start that uses the information to improve groundwater characterisation for the region. Montgomery D.R., Greenberg H.M., Smith D.T. (2003) Stream flow response to the Nisqually earthquake. Earth & Planetary Science Letters 209 19-28.

  • PDF

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • 제36권2호
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

Review on the impact of Arctic Amplification on winter cold surges over east Asia (북극 온난화 증폭이 겨울철 동아시아 한파 발생에 미치는 영향 고찰)

  • Seong-Joong Kim;Jeong-Hun Kim;Sang-Yoon Jun;Maeng-Ki Kim;Solji Lee
    • The Korean Journal of Quaternary Research
    • /
    • 제33권1_2호
    • /
    • pp.1-23
    • /
    • 2021
  • In response to the increase in atmospheric carbon dioxide and greenhouse gases, the global mean temperature is rising rapidly. In particular, the warming of the Arctic is two to three times faster than the rest. Associated with the rapid Arctic warming, the sea ice shows decreasing trends in all seasons. The faster Arctic warming is due to ice-albedo feedback by the presence of snow and ice in polar regions, which have higher reflectivity than the ocean, the bare land, or vegetation, higher long-wave heat loss to space than lower latitudes by lower surface temperature in the Arctic than lower latitudes, different stability of atmosphere between the Arctic and lower latitudes, where low stability leads to larger heat losses to atmosphere from surface by larger latent heat fluxes than the Arctic, where high stability, especially in winter, prohibits losing heat to atmosphere, increase in clouds and water vapor in the Arctic atmosphere that subsequently act as green house gases, and finally due to the increase in sensible heat fluxes from low latitudes to the Arctic via lower troposphere. In contrast to the rapid Arctic warming, in midlatitudes, especially in eastern Asia and eastern North America, cold air outbreaks occur more frequently and last longer in recent decades. Two pathways have been suggested to link the Arctic warming to cold air outbreaks over midlatitudes. The first is through troposphere in synoptic-scales by enhancing the Siberian high via a development of Rossby wave trains initiated from the Arctic, especially the Barents-Kara Seas. The second is via stratosphere by activating planetary waves to stratosphere and beyond, that leads to warming in the Arctic stratosphere and increase in geopotential height that subsequently weakens the polar vortex and results in cold air outbreaks in midlatitudes for several months. There exists lags between the Arctic warming and cold events in midlatitudes. Thus, understanding chain reactions from the Arctic warming to midlatitude cooling could help improve a predictability of seasonal winter weather in midlatitudes. This study reviews the results on the Arctic warming and its connection to midlatitudes and examines the trends in surface temperature and the Arctic sea ice.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • 제21권2호
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.