• Title/Summary/Keyword: Plane-view Shape

Search Result 42, Processing Time 0.016 seconds

A petrological study on the formation of geological heritage around Sangjogam County Park, Goseong, Gyeongsangnam-do (천연기념물 제411호 경남 고성 덕명리 공룡화석 산지 일원 병풍바위의 형성에 관한 암석학적 연구)

  • Kong, Dal-Yong;Cho, Hyeong-Seong;Kim, Jae-Hwan;Yu, Yeong-Wan;Jung, Seung-Ho;Kim, Tae-Hyeong;Kim, Jong-Sun;Jeong, Jong-Ok;Kim, Kun-Ki;Kwon, Chang-Woo;Son, Moon
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.78-91
    • /
    • 2018
  • Sangjogam, located in Goseong, Gyeongsangnam-do, was designated as Natural Monument #411, because of its diverse geological heritage, such as fossils, ripple marks, dykes, and columnar joints. In the area, Byeongpungbawi, with its beautiful columnar joints vertical to the bedding plane of the underlying sedimentary rocks and spectacular coastal view, was named after its overall shape reminiscent of a huge folding screen. The purpose of this study was to investigate the formation process of the columnar joints using the anisotropy of magnetic susceptibility (AMS) method. AMS measurements showed that the k1 and k3 values representative of directions of the long and short axes of a magnetic particle at each point strongly clustered, and the oblate magnetic foliation structure in Byeongpungbawi developed during sill-type intrusion rather than lava flow. In summary, Byeongpungbawi was produced by sill-type intrusion along the bedding plane of the underlying sedimentary layer, and the subsequent formation of columnar joints was accompanied by the cooling and contraction of intruding rhyolite magma. This study potentially provides a basic research tool in understanding the formation mechanism of columnar joints which are widely distributed in southern Korea.

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF