• Title/Summary/Keyword: Plane of Symmetry

Search Result 166, Processing Time 0.021 seconds

Complementarity and nonlinear structural analysis of skeletal structures

  • Tin-Loi, F.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.491-505
    • /
    • 1997
  • This paper deals with the formulation and solution of a wide class of structures, in the presence of both geometric and material nonlinearities, as a particular mathematical programming problem. We first present key ideas for the nonholonomic (path dependent) rate formulation for a suitably discretized structural model before we develop its computationally advantageous stepwise holonomic (path independent) counterpart. A feature of the final mathematical programming problem, known as a nonlinear complementarity problem, is that the governing relations exhibit symmetry as a result of the introduction of so-called nonlinear "residuals". One advantage of this form is that it facilitates application of a particular iterative algorithm, in essence a predictor-corrector method, for the solution process. As an illustrative example, we specifically consider the simplest case of plane trusses and detail in particular the general methodology for establishing the static-kinematic relations in a dual format. Extension to other skeletal structures is conceptually transparent. Some numerical examples are presented to illustrate applicability of the procedure.

Usefulness Verification for Flexible Stretch Forming Process using finite Element Method (유한요소법을 이용한 가변 스트레치 성형공정의 적합성 검증)

  • Seo, Y.H.;Heo, S.C.;Park, J.W.;Song, W.J.;Ku, T.W;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.241-244
    • /
    • 2009
  • This paper deals with a usefulness verification of stretch forming process using flexible die. The stretch forming method is widely used in aircraft and high-speed train industries for manufacturing of skin structure, which is made of sheet metal. A great number of solid dies are originally used and developed for specific shapes with respect to different curvature radii of the skin structures. Accordingly, flexible stretch forming process is proposed in this study. It replaces the conventional solid dies with a set of height adjustable discrete punches. A usefulness of the flexible die is verified through extensive numerical simulations of the stretch forming process for simply curved sheet plate. The elastic recovery is considered and formability evaluations are conducted through a comparison of symmetry plane configurations.

  • PDF

Effects of Material Anisotropy on Ultrasonic Beam Propagation: Diffraction and Beam Skew

  • Jeong, Hyun-Jo;Schmerr, W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.198-205
    • /
    • 2006
  • The necessity of nondestructively inspecting austenitic steels, fiber-reinforced composites, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface playa key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasilongitudinal(qL) beam propagates in the symmetry plane of transversely isotropic austenitic steels. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions.

Ship Frame Ring Analysis by a Matrix Method (매트릭스법(法)에 의한 선체근골환(船體筋骨環) 해석(解析))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 1973
  • A simple matrix method to analyze the ship's transverse frame ring is proposed. In this approach, the frame ring is treated as a plane frame of uniform slender members. The loadings on the frame consist of buoyancy loads, deck loads and cargo loads. The hatch coaming are considered to deflect under the loads. Because of symmetry, only the half of the frame is analyzed. The method is to obtain the forces and moments on each member. The deformation of the frame can be determined from the nodal displacements. For a sample calculation, a frame ring of a 10,000 ton class cargo liner is analyzed on the IBM 1130 computer. The numerical results obtained are proved to be resonable.

  • PDF

Studies on the Crystal Structure of Benzidine Perchlorate by X-ray Diffraction method (II) Crystal Structure Analysis (X-線 廻折法을 利用한 벤지딘過鹽素酸鹽의 結晶構造에 關한 硏究 (II)結晶構造의 解析)

  • Koo, Chung-Hoe;Shin, Hyun-So;Kang, Man-Hyong
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.123-126
    • /
    • 1970
  • The approximate crystal structure of benzidine monoperchlorate has been determined by single crystal X-Ray diffraction technique and patterson method. As the molecule has a center of symmetry in it and location of perchlorate ion is symmetrically on the mirror plane in the unit cell, perchlorate ion is forming hydrogen bond with two -$NH_2$ groups in the different molecule. Thus, one molecule of benzidine and perchloric acid combines 1:1 by mole ratio.

  • PDF

Correlation between Structures and Magnetism in Iron: Ferromagnetism and Antiferromagnetism

  • Lee, Dong-Kook;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.68-71
    • /
    • 2007
  • Even a pure bulk Fe has a complicated magnetic phase and its magnetism is still needed to be clarified. In this study we investigated the magnetism of bcc and fcc bulk Fe with total energy calculations as functions of atomic volume. The full-potential linearized augmented plane wave method was adopted within a generalized gradient approximation. The ground state of bulk Fe is confirmed to be of ferromagnetic (FM) bcc. For fcc structured Fe an antiferromagnetic (AFM) state is more stable compared to FM states which exist as low spin and high spin states. The stable AFM states were found to accompany a tetragonal distortion, while the FM states remained in a cubic symmetry. At an expanded lattice constant a high spin FM state was calculated to be able to be stabilized with significant enhanced magnetic moment compared to the value of the ground state, bcc FM.

Design and Analysis of UWB Elliptical Slot Antenna (UWB 타원형 슬롯 안테나의 설계 및 해석)

  • Jang, Joon-Won;Choi, Kyung;Hwang, Hee-Yong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.419-422
    • /
    • 2007
  • This paper, designed UWB elliptical slot antenna and analysis based on the distribution of the electromagnetic fields pattern and resonant mode of designed antenna is presented. Designed antenna is fabricated on FR4 substrate with thickness of 1.524mm and relative dielectric constant 4.4. The measured bandwidth of $3.6GHz{\sim}20GHz$ for VSWR<2. Through the field pattern and resonant mode analysis that the slot antenna operates on a series of the multi-pole radiation based on TE modes matched to system impedance. And the perfect magnetic wall is along the axis of symmetry on the y-z plane. This result gives us an easier method to design the similar antennas, which is the impedance matching to the system impedance after once constructing a proper structure with a series of multi-mode resonances.

  • PDF

Analytical methodology for solving anisotropic materials of antiplane problems

  • Ma, Chien-Ching;Cheng, Yih-Hong
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.147-157
    • /
    • 1999
  • An analytical methodology for solving antiplane problem of anisotropic materials is proposed and discussed in detail in this study. The material considered in this study possesses a symmetry plane at z=0. The relationship between the problems of anisotropic materials and the corresponding isotropic problems are established by Ma (1996) on the basis of the general solutions for the shear stresses and displacement in both the polar and Cartesian coordinate systems. This implies that any solution of an anisotropic problem can be obtained by solving a corresponding isotropic problem. In this study some examples and numerical results are presented as an explanation of how the complicated anisotropic problem could be solved by the associated simpler isotropic problem.

A Study of Methodology Developing Reconstructed body using Styrofoam Boards (스티로폼 보드를 이용한 연구용 재현바디 제작 방법 연구)

  • Choi, Young-Lim;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.713-720
    • /
    • 2008
  • The purpose of this study was to propose the method reproducing three dimensional figure data to a reconstructed body by the styrofoam board. To make the reconstructed body, the 3D figure data were rotated to make symmetry and the surfaces were edited. The horizontal curves were gathered equally-spaced based on the waist horizontal plane. we proposed the process to cut the styrofoam board according to the horizontal curves, to assemble them to organize the shape of the body figure and to coat the surface with the knitted. The 3-dimensional figure data of straight type, swayback type, lean-back type and bend-forward type were selected and the reconstructed bodies were made as above. And the compatibility was verified by the measurement comparison and deviations between 3-dimensional figure data and reconstructed body.

Numerical Study of Wavy Taylor-Couette Flow(I) -Without an Axial Flow- (Wavy Taylor-Couette 유동에 대한 전산해석 (I) -축방향 유동이 없는 경우-)

  • Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.697-704
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[J. Fluid Mech., 364, 1998]. They carried out experiment using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When Taylor number increases over the critical one, the flow instability caused by curved streamlines of the tangential flow induces Taylor vortices in the flow direction. As Taylor number further increases over another critical one, the steady Taylor vortices become unsteady and non-axisymmetrically wavy. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.