• Title/Summary/Keyword: Plane motion error

Search Result 42, Processing Time 0.039 seconds

Development of plane Motion Accuracy Measurement Unit of NC Lathe (NC 선반의 정면 운동정도 측정장치의 개발)

  • 김영석;한지희;정정표;윤원주;송인석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.101-106
    • /
    • 2004
  • Measurements of linear motion accuracy for one axis of NC lathe have achieved with laser interferometer system, but measurement of plane motion accuracy for two axes on zx-plane of NC lathe have not achieved with the above system. Therefore in this study, measuring unit system is organized using two optical linear scales in order to acquire error. data during of plane motion of ATC(Automatic Tool Change.) of NC lathe by reading zx-plane coordinates. Two optical linear scales of measuring unit are fixed on zx-plane of NC lathe, and moving part of the scales are fixed to the ATC and then error motion data of z, x-coordinates of the ATC are received from the scales through the PC counter card inserted in computer at constant time intervals using tick pulses coming out from computer. And then, error motion data files acquired from measuring are saved in computer memory and the aspect of plane motion are modeled to plots, and range of the error data, means. average deviations, and standard deviations etc. are calculated by means of statistical treatments using computer programs.

Accuracy and Reliability of The Spine-Pelvis Monitor to Record Three-Dimensional Characteristics of The Spine-Pelvic Motion

  • Kim, Jung-Yong;Yoon, Kyung-Chae;Min, Seung-Nam;Yoon, Sang-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.345-352
    • /
    • 2012
  • Objective: The aim of this study is to evaluate the accuracy and reliability of Spine-Pelvis Monitor(SPM) that was developed to measure 3-dimensional motion of spine and pelvis using tilt sensor and gyro sensor. Background: The main cause of low back pain is very much associated with the task using the low back and pelvis, but no measurement technique can quantify the both spine and pelvis. Method: For testing the SPM, 125 angles from three anatomical planes were measured three times in order to evaluate the accuracy and reliability. The accuracy of SPM in measuring dynamic motion was evaluated using digital motion analysis system. The motion pattern captured by two measuring methods was compared with each other. In result, the percentage error and Cronbach coefficient alpha were calculated to evaluate the accuracy and reliability. Results: The percentage error was 0.35% in flexion-extension on sagittal plane, 0.43% in lateral bending on coronal plane, and 0.40% in twisting on transverse plane. The Cronbach coefficient alpha was 1.00, 0.99 and 0.99 in sagittal, coronal and transvers plane, respectively. Conclusion: The SPM showed less than 1% error for static measurement, and showed reasonably similar pattern with the digital motion system. Application: The results of this study showed that the SPM can be the measuring method of spine pelvis motion that enhances the kinematic analysis of low back dynamics.

The Effect of Taping on the Range of Motion and Proprioception at the Ankle Joint (테이핑이 발목의 관절가동범위와 고유수용성감각에 미치는 영향)

  • Kim, Chang-In;Kwon, Oh-Yun;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.43-52
    • /
    • 2001
  • This study was designed to determine the effect of ankle taping and short period of walking on the treadmill on the range of motion (ROM) and proprioception at the ankle joint. Twenty healthy male subjects (mean age=24.2 yr) participated in this study. Goniometry and videotape replaying method were used to measure the ankle ROM. Passive sagittal and frontal plane motions were measured. The difference in degree between the stimulus point and the reproduced point was defined as an angular error. The measurements were performed at four different phases: pre-taping (PRT), post-taping immediately (POT), post-5 minute walking with taping (P5M), and post-10 minute walking with taping (P10M). The ankle of dominant limb was taped by a certified athletic trainer using a closed basket weave technique. Participants walked on the treadmill at 2.5 mph. The results showed that the mean of the sagittal plane motion at PRT, POT, P5M, and P10M was 53.0, 30.5, 36.2, and 40.2 degrees, respectively. The frontal plane motion at PRT, POT, P5M, and P10M was 33.6, 13.9, 15.7, and 18.6 degrees, respectively. The angular error at PRT, POT, P5M, and P10M was 5.5, 1.6, 1.8, and 1.9 degrees, respectively. After 10 minutes of walking, the sagittal plane motion and frontal plane motion was increased by 9.7 and 4.7 degrees compared with POT, respectively. The proprioception was significantly improved after the application of ankle taping. Both the restriction of frontal plane motion and proprioception improvement at the ankle joint may contribute to ankle stability during walking.

  • PDF

Organization of Circular Motion Accuracy Measuring System of NC Lathe using Linear Scales (리니어 스케일을 이용한 NC 선반의 원 운동정도 측정 시스템의 구성)

  • Kim Young Seuk;Kim Jae Yeol;Kim Jong Kwan;Han Ji Hee;Jung Jung Pyo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Measurements of circular motion accuracy of NC lathe have achieved with ball bar systems proposed by Bryan, but the ball bar systems have ifluenced on the measuring data by way of the accuracy of the balls and the contacts of balls and bar seats. Therefore in this study, error data during of circular motion of ATC(Automatic Tool Changer) of NC lathe will be acquired by reading zx plane coordinates using two optical linear scales. Two optical linear scales of measuring unit are fixed on z-x plane of NC lathe, and the moving part is fixed to ATC and then is made to receive data of coordinates of the ATC at constant time intervals using tick pulses comming out from computer. And then, error data files of radial direction of circular motion are calculated with the data read, and the aspect of circular motion are modeled to plots, and are analysed by means of statistical treatments of circularity, means, standard deviations etc.

Digital image stabilization based on bit-plane matching (비트 플레인 정합에 의한 디지털 영상 안정화)

  • 이성희;전승원;고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1471-1481
    • /
    • 1998
  • In this paper, we propose a new digital image stabilization scheme based on the bit-plane matching. In the proposed algorithm, the conventional motion estimation algorithms are applied to the binary images extracted from the bit-plane images. It is shown that the computational complexity of the proposed algorithm can be significantly reduced by replacing the arithmetic calculations with the binary Boolean functions, while the accuracy of motion estimation is maintained. Furthermore, an adaptive algorithm for selecting a bit-plane in consideration of changes in external illumination can provide the robustness of the proposed algorithm. We compared the proposed algorithm with existing algorithms using root mean square error (RMSE) on the basis of the brute-force method, and proved experimentally that the proposed method detects the camera motion more accurately than existing algorithms. In addition, the proposed algorithm performs digital image stabilization with less computation.

  • PDF

Study on the Three Dimensional Flow Characteristics of the Propeller Wake Using PIV Techniques (PIV 기법을 이용한 프로펠러 후류의 3차원 유동 특성 연구)

  • Paik, Bu-Geun;Kim, Jin;Kim, Kyung-Youl;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.219-227
    • /
    • 2007
  • A stereo-PIV (particle image velocimetry) technique is used to investigate the vortical structure of the wake behind a rotating propeller in the present study. A four bladed propeller is tested in a cavitaion tunnel without any wake screen. Hundreds of instantaneous velocity fields are phase-averaged to reveal the three dimensional spatial evolution of the flow behind the propeller. The results of conventional 2-D PIV are also compared with those of the stereo-PIV to understand the vortical structure of propeller wake deeply. The variations of radial and axial velocities in the 2-D PIV results seem to be affected by the out-of-plane motion. generating a little perspective error in the in-plane velocity components of the slipstream. The strong out-of-plane motion around the hub vortex also causes the perspective error to vary the axial velocity component a little at the near wake region. The out-of-plane velocity component had the maximum value of about 0.3U0 in the tip vortices and continued its magnitude in the wake region.

Two Plane Balancing Method based on the Equations of Motion of Rotor Dynamic System (회전체 동역학계의 운동방정식에 근거한 양면 밸런싱 기법)

  • Jeong, Dong-Hwa;Park, No-Gil
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.623-628
    • /
    • 2000
  • Since the influence coefficients method in balancing of rotors is developed with the basement of not the principle of rotor system dynamics, but the linear relationshop of between the measuring quantities and the unbalance quantities, field engineers can apply the method without additional understanding on the rotor dynamics. But the influence coefficients method is not robust to the measurement error. This paper proposes a new method for the two plane balancing of rigid rotor, based on the principle of rotor dynamics. And the kit for experiment is made by ourselves, and in order to measure in the same condition with it, we do a experiment three times. And then with the Response of gap sensor, the SNR(Signal and Noise) is compared and analyzed about measuring error between the influence coefficient method, and the new method, and it is proved that the new method is less robust than the influence coefficient method.

  • PDF

Measuring of Linear Motion Accuracy of NC Lathe using Linear Scales (리니어 스케일을 이용한 NC 선반의 직선 운동정도 측정)

  • 김영석;김재열;한지희;정정표;윤원주;송인석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1243-1248
    • /
    • 2003
  • It is very important to measure linear motion accuracy of NC lathe as it affects all other parts of machines machined by them in industries. If the motion accuracy of NC lathe is bad, the dimension accuracy and the change-ability of works will be bad in the assembly of machine parts. In this paper, computer software systems are organized to measure linear motion of ATC(Automatic tool changer) on zx plane of NC lathe using two linear scales and the time pulses coming out from computer in order to get data at constant time intervals from the linear scales. And each sets of error data obtained from the test is discripted to plots and the results of linear motion errors are expressed as numerics by computer treatment.

  • PDF

The design of XYZ 3-axis stage for AFM system (AFM 시스템을 위한 XYZ 3축 스테이지의 설계)

  • 김동민;김기현;심종엽;권대갑;엄천일
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.36-36
    • /
    • 2002
  • To Establish of standard technique of length measurent in 2D plane, we develope AFM system. The XY scanner scans the sample only in XY plane, while the Z scanner scans the specimen only in Z-direction. Cantilever tip is controlled to has constant height relative to speciman surface by feedback of PSPD signal. To acquire high accuracy, Z-axis measuring sensor will be added.(COXI or others). In this paper we design XYZ stage suitable for this AEM system. For XY stage, single module parallel-kinnematic flexure stage is used which has high orthogonality and minimum out-of-plane motion. To obtain best performance optimal design is performed. For XY stage, to be robust about parasitic motion optimal design of maximizing Z and tilt stiffness is performed under the constraint of motion range and stage size. And for Z stage, optimal design of maximizing 1st resonant frequency is performed. Because if resonant frequency is get higher, scan speed is improved. So it makes reduce the error by sensor drift. Resultly XYZ stage each have 1st natural frequency of 115㎐, 201㎐, 2.66㎑ and range 109㎛, 110㎛, 12㎛.

  • PDF

An Eigen Analysis with Out-of-Plane Deformable Ring Element (면외변형 링 요소를 이용한 고유해석)

  • Moon, Won-Joo;Min, Oak-Key;Kim, Yong-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1719-1730
    • /
    • 1993
  • This paper presents the theoretical natural frequencies of out-of-plane deformable ring based on the variables such as out-of-plane deflection, torsional rotation and shear rotation. Based on the same variables, a finite element eigen analysis is carried out by using the $C^0$-continuous, isoparametric element which has three nodes per element and three degrees-of-freedom at each node. Numerical experiments are peformed to find the integration scheme which produces accurate natural frequencies, natural modes and correct rigid body motion. The uniformly reduced integration and the selective reduced integration give more accurate numerical frequencies than the uniformly full integration, but the uniformly reduced integration produces incorrect rigid body motion while selective reduced integration does correct one. Therefore, the ring element based on the three variables which employes selective reduced integration is recommended to avoid spurious modes, to alleviate the error due to shear locking and to produce correct rigid body motion, simultaneously.