• 제목/요약/키워드: Plane frame

검색결과 340건 처리시간 0.033초

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation

  • Kim, Jin-Wook;Kim, Soo-Jae;Ko, Hee-Dong;Terzopoulos, Demetri
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 3부
    • /
    • pp.326-333
    • /
    • 2007
  • To simulate solid dynamics,a we must com-pute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously re-peated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a frame-buffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games.

  • PDF

Experimental characterization of timber framed masonry walls cyclic behaviour

  • Goncalves, Ana Maria;Ferreira, Joao Gomes;Guerreiro, Luis;Branco, Fernando
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.189-204
    • /
    • 2015
  • After the large destruction of Lisbon due to the 1755 earthquake, the city had to be almost completely rebuilt. In this context, an innovative structural solution was implemented in new buildings, comprising internal timber framed walls which, together with the floors timber elements, constituted a 3-D framing system, known as "cage", providing resistance and deformation capacity for seismic loading. The internal timber framed masonry walls, in elevated floors, are constituted by a timber frame with vertical and horizontal elements, braced with diagonal elements, known as Saint Andrew's crosses, with masonry infill. This paper describes an experimental campaign to assess the in-plane cyclic behaviour of those so called "frontal" walls. A total series of 4 tests were conducted in 4 real size walls. Two models consist of the simple timber frames without masonry infill, and the other two specimens have identical timber frames but present masonry infill. Experimental characterization of the in-plane behaviour was carried out by static cyclic shear testing with controlled displacements. The loading protocol used was the CUREE for ordinary ground motions. The hysteretic behaviour main parameters of such walls subjected to cyclic loading were computed namely the initial stiffness, ductility and energy dissipation capacity.

Static finite element analysis of architectural glass curtain walls under in-plane loads and corresponding full-scale test

  • Memari, A.M.;Shirazi, A.;Kremer, P.A.
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.365-382
    • /
    • 2007
  • A pilot study has been conducted to guide the development of a finite element modeling formulation for the analysis of architectural glass curtain walls under in-plane lateral load simulating earthquake effects. This pilot study is one aspect of ongoing efforts to develop a general prediction model for glass cracking and glass fallout for architectural glass storefront and curtain wall systems during seismic loading. For this study, the ANSYS finite element analysis program was used to develop a model and obtain the stress distribution within an architectural glass panel after presumed seismic movements cause glass-to-frame contact. The analysis was limited to static loading of a dry-glazed glass curtain wall panel. A mock-up of the glass curtain wall considered in the analysis with strain gages mounted at select locations on the glass and the aluminum framing was subjected to static loading. A comparison is made between the finite element analysis predicted strain and the experimentally measured strain at each strain gage location.

Seismic assessment and finite element modelling of glazed curtain walls

  • Caterino, Nicola;Zoppo, Marta Del;Maddaloni, Giuseppe;Bonati, Antonio;Cavanna, Giovanni;Occhiuzzi, Antonio
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.77-90
    • /
    • 2017
  • Glazed curtain walls are façade systems frequently chosen in modern architecture for mid and high-rise buildings. From recent earthquakes surveys it is observed the large occurrence of non-structural components failure, such as storefronts and curtain walls, which causes sensitive economic losses and represents an hazard for occupants and pedestrians safety. In the present study, the behavior of curtain wall stick systems under seismic actions has been investigated through experimental in-plane racking tests conducted at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR) on two full-scale aluminium/glass curtain wall test units. A finite element model has been calibrated according to experimental results in order to simulate the behavior of such components under seismic excitation. The numerical model investigates the influence of the interaction between glass panels and aluminium frame, the gasket friction and the stiffness degradation of aluminium-to-glass connections due to the high deformation level on the curtain walls behavior. This study aims to give a practical support to researchers and/or professionals who intend to numerically predict the lateral behavior of similar façade systems, so as to avoid or reduce the need of performing expensive experimental tests.

JPEG2000 CODEC을 위한 DWT및 양자화기 VLSI 설계 (A VLSI Design of Discrete Wavelet Transform and Scalar Quantization for JPEG2000 CODEC)

  • 이경민;김영민
    • 대한전자공학회논문지SD
    • /
    • 제40권1호
    • /
    • pp.45-51
    • /
    • 2003
  • 본 논문은 차세대 정지영상 압축 표준으로서 Wavelet 변환과 Bit-plane 단위의 산술부호화(Arithmetic coding)에 기반한 JPEG2000 코덱의 Wavelet 변환과 양자화기의 하드웨어적 구조를 제안하고, 설계하였다. DWT(Discrete Wavelet Transform)는 Lossy coding과 Lossless coding에 각각 적용할 수 있는 Daubechies 9/7 필터와 Daubechies 5/3 필터를 선택 가능하도록 설계하였으며 양자화기는 Scalar Quantization 방식를 사용하였다. 설계된 DWT와 양자화기는 Xilinx FPGA technology를 이용하여 Synopsys에서 합성한 후 동작을 검증하였으며, 설계된 블록을 30㎒로 동작 시켰을 때 640×480 크기의 걸려 이미지의 경우 초당 10프레임의 성능을 보인다.

CFD Analysis of a Partial Admission Turbine Using a Frozen Rotor Method

  • Noh, Jun-Gu;Lee, Eun-Seok;Kim, Jinhan;Lee, Dae-Sung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.861-866
    • /
    • 2004
  • A numerical flow analysis has been performed on the partial admission turbine of KARI turbopump to support the aerodynamic and structural dynamic assessments. The flow-field in a partial admission turbine is essentially three dimensional and unsteady because of a tip clearance and a finite number of nozzles. Therefore the mixing plane method is generally not appropriate. To avoid heavy computational load due to an unsteady three dimensional calculation, a frozen rotor method was implemented in steady calculation. It adopted a rotating frame in the grid block of a rotor blade by adding some source terms in governing equations. Its results were compared with a mixing plane method. The frozen rotor method can detect the variation of flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a idea of wake loss mechanism starting from the lip of a nozzle. This wake loss was assumed to be one of the most difficult issues in turbine designers. Thus, the frozen rotor approach has proven to be an efficient and robust tool in design of a partial admission turbine.

  • PDF

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

Common-Mode Current Cancellation Scheme of Half-Bridge Switch-Mode Converter for DC Motor Drive

  • Srisawang, Arnon;Panaudomsup, Sumit;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1876-1879
    • /
    • 2003
  • Due to the conventional half-bridge switch-mode converters for dc motor drive have been usually using unbalanced circuit topologies which generate common-mode currents through parasitic capacitors distributed between the ground and the dc motor frame such as the heat-sink of switching devices or the frame of the dc motor. This paper describes methods that cancel common-mode current generated in half-bridge switch-mode converters by using circuit balancing technique. The circuit balancing is to make the noise pickup or occurring in both conductor lines, signal and return pathes, is equal in amplitude and opposite in phase so that it will be canceled out in the ground plane. The common-mode current cancellation in the proposed converter is confirmed by experimental results.

  • PDF

악안면 형태에 관한 두부방사선계측학적 연구 (A ROENTGENOCEPHALOMETRIC STUDY ON MAXILLOFACIAL MORPHOLOGY)

  • 김현순;남동석
    • 대한치과교정학회지
    • /
    • 제13권1호
    • /
    • pp.45-62
    • /
    • 1983
  • To recognize the problems in malocclusion by roentgenocephalograms, the author designed a new pentagonal frame based on maxillary and mandibular bones. The subjects consisted of 44 normal occlusions (20 male and 24 female), 44 Class II division 1 malocclusions (15 male and 29 female) and 67 Class III malocclusions (31 male and 36 female). The results are as follows; 1. In normal group, the maxillary and mandibular skeletons of female we placed more closely to FH plane, so more anteriorly and upward than those of male. 2. In normal group, the posterior vertical height is longer in male than in female and the upper anterior teeth of female are in more labioversion than those of male. 3. By the X, Y coordinate values in pentagonal frame, it is helpful to recognize certain problems in malocclusions. 4. The posterior vertical height is a good indicator in detecting Angle's Class III malocclusion. 5. The maxillary and mandibular body length, the anterior point of maxillary and mandibular body length and the axial inclination of upper and lower anterior teeth can be useful in discerning Angle's Class II & Class III malocclusion.

  • PDF

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.