• Title/Summary/Keyword: Plane Detection

Search Result 310, Processing Time 0.034 seconds

Study on the Applicability of Semiconductor Compounds for Dose Measurement in Electron Beam Treatment (전자선 치료 분야의 선량 측정을 위한 반도체 화합물의 적용가능성 연구)

  • Yang, Seungwoo;Han, Moojae;Shin, Yohan;Jung, Jaehoon;Choi, Yunseon;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this study, it was intended to replace the existing plane parallel ionization chamber, which requires cross-calibration in electron beam treatment. The semiconductor compounds HgI2 was fabricated as detector, and the characteristics of HgI2 detector for the 6, 9 and 12 MeV electron beam was analyzed in the linear accelerator. It was also intended to evaluate the possibility of substitution with existing detectors and their applicability as electron beam dosimetry and to use them as a basic study of the development of electronic beam dosimeter. As a result of reproducibility, RSD was 0.4246%, 0.5054%, and 0.8640% at 6, 9, and 12 MeV energy, respectively, indicating that the output signal was stable. As a result of the linearity, the R2 was 0.9999 at 6 MeV, 0.9996 at 9 MeV, and 0.9997 at 12 MeV showed that the output signal is proportional to HgI2 as the dose is increased. The HgI2 detector of this study is highly applicable to electron beam measurement, and it may be used as a basic research on electron beam detection.

Object/Non-object Image Classification Based on the Detection of Objects of Interest (관심 객체 검출에 기반한 객체 및 비객체 영상 분류 기법)

  • Kim Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.25-33
    • /
    • 2006
  • We propose a method that automatically classifies the images into the object and non-object images. An object image is the image with object(s). An object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. We define four measures based on the characteristics of an object to classify the images. The center significance is calculated from the difference in color distribution between the center area and its surrounding region. Second measure is the variance of significantly correlated colors in the image plane. Significantly correlated colors are first defined as the colors of two adjacent pixels that appear more frequently around center of an image rather than at the background of the image. Third one is edge strength at the boundary of candidate for the object. By the way, it is computationally expensive to extract third value because central objects are extracted. So, we define fourth measure which is similar with third measure in characteristic. Fourth one can be calculated more fast but show less accuracy than third one. To classify the images we combine each measure by training the neural network and SYM. We compare classification accuracies of these two classifiers.

  • PDF

$^{13}C$ NMR Analysis for the Characterization of Heme Electronic/Molecular Structure in Horse Myoglobin Cyanide (Myoglobin 시안 단백질에 포함된 Heme에 대한 전자 및 분자구조 규명을 위한 $^{13}C$ NMR분석)

  • Lee, Kang-Bong;Kweon, Jee-Hye;Lee, Ho-Jin;Kim, Young-Man;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 1998
  • The reverse detection heteronuclear multiple quantum coherence, HMQC study of metcyano complex of horse myoglobin(MbCN) has provided the complete assignment of hyperfine shifted resonances of heme carbons attached with proton(s). The application of HMQC experiment to the paramagnetic low-spin MbCN gives clear $^1H$ and $^{13}C$ coherences for the paramagnetic amino acid residues as well as heme side chains, and can be extended to the low-spin paramagnetic hemoprotein derivative for the assignment of natural abundance $^{13}C$ resonances. This assignment strategy can avoid possible ambiguities that may result from the sole utilization of $^1H$ nuclear Overhauser effect for the assignment of heme $^1H$ signals resonating in the diamagnetic region. The resulting 2,4-vinyl ${\alpha}$-carbons and 7-propionate ${\beta}$-carbon follow anomalous anti-Curie behavior, and are indicative of incoplanarity with heme plane. Magnetic/electronic asymmetry of heme induced by proximal histidine(His) makes spread that the hyperfine shifted heme carbon resonances over the range of 250 ppm at $25^{\circ}C$. These heme carbon resonances would be the much more sensitive probe than those of proton resonances in analyzing the nature of heme electronic structure of myoglobin.

  • PDF

PRODUCT10N OF KSR-III AIRGLOW PHOTOMETERS TO MEASURE MUV AIRGLOWS OF THE UPPER ATMOSPHERE ABOVE THE KOREAN PENINSULAR (한반도 상공의 고층대기 중간 자외선 대기광 측정을 위한 KSR-III 대기광도계 제작)

  • Oh, T.H.;Park, K.C.;Kim, Y.H.;Yi, Y.;Kim, J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.305-318
    • /
    • 2002
  • We have constructed two flight models of airglow photometer system (AGP) to be onboard Korea Sounding Rocket-III (KSR-III) for detection of MUV dayglow above the Korean peninsular. The AGP system is designed to detect dayglow emissions of OI 2972${\AA}$, $N_2$ VK(0,6) 2780${\AA}$, $N_2$ 2PG 3150${\AA}$ and background 3070${\AA}$ toward the horizon at altitudes between 100 km and 300 km. The AGP system consists of a photometer body, a baffle an electronic control unit and a battery unit. The MUV dayglow emissions enter through a narrow band interference filter and focusing lens of the photometer, which contains an ultraviolet sensitive photomultiplier tube. The photometer is equipped with an in-flight calibration light source on a circular plane that will rotate at the rocket's apogee. A bane tube is installed at the entry of the photometer in order to block strong scattering lights from the lower atmosphere. We have carried out laboratory measurements of sensitivity and in-flight calibration light source for the AGP flight models. Although absolute sensitivities of the AGP flight models could not be determined in the country, relative sensitivities among channels are well measured so that observation data during rocket flight in the future can be analyzed with confidence.

The study of the stereo X-ray system for automated X-ray inspection system using 3D-reconstruction shape information (3차원 형상복원 정보 기반의 검색 자동화를 위한 스테레오 X-선 검색장치에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2043-2050
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. As a radiation image is just the density information of the scanned object, the direct application of general stereo image processing techniques is inefficient. So we propose that a new volume-based 3-D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for X-ray inspection. For validation of the proposed shape reconstruction algorithm using volume, 15 samples were scanned and reconstructed to restore the shape using an X-ray stereo inspection system. Reconstruction results of the objects show a high degree of accuracy compared to the width (2.56%), height (6.15%) and depth (7.12%) of the measured value for a real object respectively. In addition, using a K-Mean clustering algorithm a detection efficiency of 97% is achieved. The results of the reconstructed shape information using the volume based shape reconstruction algorithm provide the depth information of the inspected object with stereo X-ray inspection. Depth information used as an identifier for an automated search is possible and additional studies will proceed to retrieve an X-ray inspection system that can greatly improve the efficiency of an inspection.

Prenatal Diagnosis of Accompanying Alveolar Cleft and Cleft Palate in Fetuses with Cleft Lip Using Prenatal 3D Sonographic Identification and Antenatal Counseling (구순열 태아에서 3D 산전 초음파를 이용한 치조열 및 구개열의 동반 유무 진단 및 산전상담)

  • Koh, Kyung Suck;Kim, Hoon;Choi, Jong Woo;Won, Hye Sung;Kim, Sun Kwon
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.181-185
    • /
    • 2007
  • Purpose: Cleft lip and/or palate is the most common congenital facial anomaly whose incidence is about 1 in 500~1000 live births. As this anomaly may be associated with the serious chromosomal anomalies or the multiple organ abnormalities resulting in the fetal loss or perinatal maternal morbidity and mortality, careful prenatal counseling with early and accurate detection is important. Although conventional prenatal ultrasound(US) examination in midterm pregnancy has been applied for screening of cleft lip, there are definite limitations in the diagnosis of accompanying cleft palate or alveolar cleft. We applied high-resolution 3D US along the serial axial, coronal and sagittal plane so that we could diagnose the cleft palate and/or alveolar cleft in fetuses with cleft lip. Methods: From May 2005 to September 2005, 20 fetuses with cleft lip were examined with prenatal 3D US. Average maternal age was 28.8 years old(24-35 years old), and average gestational age was 24.8 weeks(17.6 to 34.2 weeks). Consecutive axial, coronal and sagittal multislice view were obtained via prenatal 3D US examination and diagnosis of cleft palate and/or alveolar cleft in cleft lip fetuses was followed. Results: With noninvasive and safe prenatal 3D US examination, 17 of 20 cleft lip fetuses were demonstrated to have cleft palate and/or alveolar cleft. Prenatal counseling according to the result was made. Conclusion: Existing prenatal US examination is suitable for screening the cleft lip fetuses but has limitation in identifying the related existence of cleft palate and/ or alveolar cleft. Authors verify the presence of cleft palate and/or alveolar cleft acquiring the successive multislice axial, coronal, and sagittal view with prenatal 3D US examination. Therefore, prenatal 3D US examination could be regarded as a noninvasive and secure screening modality in fetuses with cleft lip for confirming whether cleft palate and/or alveolar cleft is accompanied.

Distribution of Magnetic Field Depending on the Current in the μ-turn Coil to Capture Red Blood Cells (적혈구 포획용 미크론 크기 코일에 흐르는 전류의 크기에 따른 자기장 분포 특성)

  • Lee, Won-Hyung;Chung, Hyun-Jun;Kim, Nu-Ri;Park, Ji-Soo;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.162-168
    • /
    • 2015
  • The ${\mu}$-turn coil having a width of ${\mu}m$ on the GMR-SV (giant magnetoresistance-spin valve) device based on the antiferromagnetic IrMn layer was fabricated by using the optical lithography process. In the case of GMR-SV film and GMR-SV device, the magnetoresistance ratios and the magnetic sensitivities are 4.4%, 2.0%/Oe and 1.6 %, 0.1%/Oe, respectively. In the y-z plane the distribution of magnetic field of GMR-SV device and $10{\mu}$-turns coil which put under the several magnetic bead(MB)s with a diameter of $1{\mu}m$ attached to RBC (red blood cell) was analyzed by the computer simulation using the finite element method. When the AC currents of 20 kHz from 0.1 mA to 10.0 mA flow to the 10 turns ${\mu}$-coil, the magnetic field at the position of $z=0{\mu}m$ at the center of coil was calculated from $30.1{\mu}T$ to $3060{\mu}T$ in proportion to the current. The magnetic field at the position of $z=10{\mu}m$ was decreased to one-sixth of that of $z=0{\mu}m$. It was confirmed that the $10{\mu}$-turn coil having enough magnitude of magnetic field for the capture of RBC is possible to use as a biosensor for the detection of magnetic beads attached to RBC.

A REVIEW ON THE ODSCC OF STEAM GENERATOR TUBES IN KOREAN NPPS

  • Chung, Hansub;Kim, Hong-Deok;Oh, Seungjin;Boo, Myung Hwan;Na, Kyung-Hwan;Yun, Eunsup;Kang, Yong-Seok;Kim, Wang-Bae;Lee, Jae Gon;Kim, Dong-Jin;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.513-522
    • /
    • 2013
  • The ODSCC detected in the TSP position of Ulchin 3&4 SGs are typical ODSCC of Alloy 600MA tubes. The causative chemical environment is formed by concentration of impurities inside the occluded region formed by the tube surface, egg crate strips, and sludge deposit there. Most cracks are detected at or near the line contacts between the tube surface and the egg crate strips. The region of dense crack population, as defined as between $4^{th}$ and $9^{th}$ TSPs, and near the center of hot leg hemisphere plane, coincided well with the region of preferential sludge deposition as defined by thermal hydraulics calculation using SGAP computer code. The cracks developed homogeneously in a wide range of SGs, so that the number of cracks detected each outage increased very rapidly since the first detection in the $8^{th}$ refueling outage. The root cause assessment focused on investigation of the difference in microstructure and manufacturing residual stress in order to reveal the cause of different susceptibilities to ODSCC among identical six units. The manufacturing residual stress as measured by XRD on OD surface and by split tube method indicated that the high residual stress of Alloy 600MA tube played a critical role in developing ODSCC. The level of residual stress showed substantial variations among the six units depending on details of straightening and OD grinding processes. Youngwang 3&4 tubes are less susceptible to ODSCC than U3 and U4 tubes because semi-continuous coarse chromium carbides are formed along the grain boundary of Y3&4 tubes, while there are finer less continuous chromium carbides in U3 and U4. The different carbide morphology is caused by the difference in cooling rate after mill anneal. There is a possibility that high chromium content in the Y3&4 tubes, still within the allowable range of Alloy 600, has made some contribution to the improved resistance to ODSCC. It is anticipated that ODSCC in Y5&6 SGs will be retarded more considerably than U3 SGs since the manufacturing residual stress in Y5&6 tubes is substantially lower than in U3 tubes, while the microstructure is similar with each other.

Development of a Retrieval Algorithm for Adjustment of Satellite-viewed Cloudiness (위성관측운량 보정을 위한 알고리즘의 개발)

  • Son, Jiyoung;Lee, Yoon-Kyoung;Choi, Yong-Sang;Ok, Jung;Kim, Hye-Sil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.415-431
    • /
    • 2019
  • The satellite-viewed cloudiness, a ratio of cloudy pixels to total pixels ($C_{sat,\;prev}$), inevitably differs from the "ground-viewed" cloudiness ($C_{grd}$) due to different viewpoints. Here we develop an algorithm to retrieve the satellite-viewed, but adjusted cloudiness to $C_{grd} (C_{sat,\;adj})$. The key process of the algorithm is to convert the cloudiness projected on the plane surface into the cloudiness on the celestial hemisphere from the observer. For this conversion, the supplementary satellite retrievals such as cloud detection and cloud top pressure are used as they provide locations of cloudy pixels and cloud base height information, respectively. The algorithm is tested for Himawari-8 level 1B data. The $C_{sat,\;adj}$ and $C_{sat,\;prev}$ are retrieved and validated with $C_{grd}$ of SYNOP station over Korea (22 stations) and China (724 stations) during only daytime for the first seven days of every month from July 2016 to June 2017. As results, the mean error of $C_{sat,\;adj}$ (0.61) is less that than that of $C_{sat,\;prev}$ (1.01). The percent of detection for 'Cloudy' scenario of $C_{sat,\;adj}$ (73%) is higher than that of $C_{sat,\;prev}$ (60%) The percent of correction, the accuracy, of $C_{sat,\;adj}$ is 61%, while that of $C_{sat,\;prev}$ is 55% for all seasons. For the December-January-February period when cloudy pixels are readily overestimated, the proportion of correction of $C_{sat,\;adj$ is 60%, while that of $C_{sat,\;prev}$ is 56%. Therefore, we conclude that the present algorithm can effectively get the satellite cloudiness near to the ground-viewed cloudiness.

Improved Device Performance Due to AlxGa1-xAs Barrier in Sub-monolayer Quantum Dot Infrared Photodetector

  • Han, Im Sik;Byun, Young-Jin;Lee, Yong Seok;Noh, Sam Kyu;Kang, Sangwoo;Kim, Jong Su;Kim, Jun Oh;Krishna, Sanjay;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.298-298
    • /
    • 2014
  • Quantum dot infrared photodetectors (QDIPs) based on Stranski-Krastanov (SK) quantum dots (QDs) have been widely explored for improved device performance using various designs of heterostructures. However, one of the biggest limitations of this approach is the "pancake" shape of the dot, with a base of 20-30 nm and a height of 4-6 nm. This limits the 3D confinement in the quantum dot and reduces the ratio of normal incidence absorption to the off-axis absorption. One of the alternative growth modes to the formation of SK QDs is a sub-monolayer (SML) deposition technique, which can achieve a much higher density, smaller size, better uniformity, and has no wetting layer as compared to the SK growth mode. Due to the advantages of SML-QDs, the SML-QDIP design has attractive features such as increased normal incidence absorption, strong in-plane quantum confinement, and narrow spectral wavelength detection as compared with SK-DWELL. In this study, we report on the improved device performance of InAs/InGaAs SML-QDIP with different composition of $Al_xGa1-_xAs$ barrier. Two SML-QDIPs (x=0.07 for sample A and x=0.20 for sample B) are grown with the 4 stacks 0.3 ML InAs. It is investigated that sample A with a confinement-enhanced (CE) $Al_{0.22}Ga_{0.78}As$ barrier had a single peak at $7.8{\mu}m$ at 77 K. However, sample B with an $Al_{0.20}Ga_{0.80}As$ barrier had three peaks at (${\sim}3.5{\mu}m$, ${\sim}5{\mu}m$, ${\sim}7{\mu}m$) due to various quantum confined transitions. The measured peak responsivities (see Fig) are ~0.45 A/W (sample A, at $7.8{\mu}m$, $V_b=-0.4V$ bias) and ~1.3 A/W (sample B, at $7{\mu}m$, $V_b=-1.5V$ bias). At 77 K, sample A and B had a detectivity of $1.2{\times}10^{11}cm.Hz^{1/2}/W$ ($V_b=-0.4V$ bias) and $5.4{\times}10^{11}cm.Hz^{1/2}/W$ ($V_b=-1.5V$ bias), respectively. It is obvious that the higher $D^*$ of sample B (than sample A) is mainly due to the low dark current and high responsivity.

  • PDF