• 제목/요약/키워드: Plane Cracks

검색결과 174건 처리시간 0.02초

A Study on the Fracture Behavior of a Two Dimensional Crack in Gas Pipelines Considering Constraint Effects (구속효과를 구려한 가스배관 결함의 2차원적 파괴거동 해석에 관한 연구)

  • Sim, Do-Jun;Jang, Yeong-Gyun;Choe, Jae-Bung;Kim, Yeong-Jin;Kim, Cheol-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제25권1호
    • /
    • pp.61-69
    • /
    • 2001
  • EFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it is assumed that the J-integral uniquely characterizes the crack-tip stress-strain field. However, it has been proven that the J-integral alone can not be sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to investigate the fracture behavior of a crack in gas pipeline(KS D 3507) by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature(24$\^{C}$) and low temperature(-40$\^{C}$) to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects. For precise assessment of cracks, especially shallow cracks, in KS D 3507 pipeline, constraint effect must be considered.

A Study on Permeability Characteristics of Damaged Granite (화강암 공시체의 응력레벨에 따른 투수특성에 대한 연구)

  • Kim, Jong-Tae;Seiki, T.;Kang, Mee-A;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • 제17권1호
    • /
    • pp.135-142
    • /
    • 2007
  • Although rock itself has high strength or low permeability, engineering properties of rock masses are significantly influenced by discontinuities such as cracks and joints. Considered with possibility of groundwater flow in massive rock mass of deep subsurface, the connectivity of micro cracks should be analyzed as a conduit of ground-water flow. The objective of this study is to estimate permeability characteristics of granite dependent on damage process with application of joint distribution analysis and modeling of permeability analysis in rock masses. In case of average permeability coefficients, the modeling results based on micro cracks data are well matched with the results from permeability tests. Based on the visualization result of three dimensional model, the average permeability coefficients through the discharge plane have a positive relationship with the number of microcrack induced by rock damage.

An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission (음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Jong-Won;Lee, Chang-Soo
    • The Journal of Engineering Geology
    • /
    • 제21권4호
    • /
    • pp.295-304
    • /
    • 2011
  • The first step in improving our understanding of uncertainties suclt as rock mass strength parameters and deformation modulus in rock masses around high-level radioactive waste disposal repositories, for improved safety, is to study the process of crack development in intact rock. Therefore, in this study, the fracture process and crack development were examined in samples of KURT granite taken from the KAERI Underground Research Tunnel (KURT), based on acoustic emission (AE) and moment tensor analysis. The results show that crack initiation, coalescence, and unstable crack occurred at rock uniaxial compressive strengths of 0.45, 0.73, and 0.84, respectively. In addition, moment tensor analysis indicated that during the early stage of loading, tensile cracks were predominant. With increasing applied stress, the number of shear cracks gradually increased. When the applied stress exceeded the stress level required for crack damage, unstable shear cracks which directly result in failure of the rock were generated along the failure plane.

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.

Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies

  • Murigendrappa, S.M.;Maiti, S.K.;Srirangarajan, H.R.
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.635-658
    • /
    • 2005
  • The possibility of detecting a crack in L-shaped pipes filled with fluid based on measurement of transverse natural frequencies is examined. The problem is solved by representing the crack by a massless rotational spring, simulating the out-of-plane transverse vibration only without solving the coupled torsional vibration and using the transfer matrix method for solution of the governing equation. The theoretical solutions are verified by experiments. The cracks considered are external, circumferentially oriented and have straight front. Pipes made of aluminium and mild steel are tested with water as internal fluid. Crack size to pipe thickness ratio ranging from 0.20 to 0.57 and fluid (gauge) pressure in the range of 0 to 10 atmospheres are examined. The rotational spring stiffness is obtained by an inverse vibration analysis and deflection method. The details of the two methods are given. The results by the two methods are presented graphically and show good agreement. Crack locations are also determined by the inverse analysis. The maximum absolute error in the location is 13.80%. Experimentally determined variation of rotational spring stiffness with ratio of crack size to thickness is utilized to predict the crack sizes. The maximum absolute errors in prediction of crack size are 17.24% and 16.90% for aluminium and mild steel pipes respectively.

Fracture Charateristics of the Pre-Cracked fibrous Concrete Beams (前 龜裂을 준 鋼纖維 콘크리트보의 破壞特性)

  • Kwark, Kae-Hwan;Park, Jong-Gun;Park, Sai-Woong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제34권2호
    • /
    • pp.49-59
    • /
    • 1992
  • In our researches we made mix-design, with the mixing ratio and pre-cracked ratio of steel fibrous different from each other, building the steel fibrous concrete beam which had pre-cracks. To obtain the fracture characteristics of steel fibrous reinforced concrete, series of experiment were conducted on pre-cracked beam subjected to 3-point bending. Thus, we carried out experiments on the destructive characteristics of its pre-crack and post-crack and the result is as follows. 1. The compressive strength of steel fibrous concrete beam increased more slightly than plane beam, and the tensile strength increased 37%, 59%, 94% and 121% respectively when the amount of fibrous was 0.5%, 0.1% 1.5%, and 1.75% respectively. 2. As the amount of steel fibrous mixing increased ant the steel fibrous inhibited the crack growth, the crack condition of steel fibrous concrete beam was retarded irregularly, and this increased fracture load. 3. The defiance of destruction was reduced in the ratio of 1.35 times and 1.22 times respectively when the length of pre-crack was each 2cm and 4cm in comparison with the case of being without the length, and was similar to that of plane beam when the amount of steel fibrous mixing was below 1.0%, and increased linearly when it as above 1.0%. 4. The experimental formula seeking fracture energy was follows and thus we found that the value of fracture energy depended upon tensile strength and the size of speciment. $G_f=K\;{\cdot}\;f_f^'{\cdot}$da/Ec 5. We observed that in the load-strain curve of steel fibrous concrete beam the progress of the crack became slow, compared with plane beam because the crack condition became long to the extent of about 10 times. Concrete was faultiest brittleness fracture through the study, it was known ductile.

  • PDF

P Wave Velocity Anisotropy and Microcracks of the Pochon Granite Due to Cyclic Loadings (압축피로에 의한 포천화강암의 미세균열 발달과 P파속도 이방성)

  • Kim, Yeonghwa;Jang, Bo-An;Moon, Byeung Kwan
    • Economic and Environmental Geology
    • /
    • 제30권4호
    • /
    • pp.353-362
    • /
    • 1997
  • P wave velocities of core samples from the Pocheon granite were measured before and after applications of cyclic loading. Then. distribution of the pre-existing microcracks and microcracks developed due to the cyclic loading was investigated by analyzing P wave velocity anisotropies and microscopic observations from thin sections. Anisotropy constants were calculated with three different ways: (1) $C_A$ between the maximum and the minimum velocities, (2) $C_AI$ between velocities measured along the axial direction and the average of six velocities measured in the planes perpendicular to the loading axis (rift plane) and (3) $C_AII$ between the maximum and the minimum velocities measured in the plane perpendicular to the loading axis. Among anisotropy constants. $C_AI$ was the most effective anisotropy constant to identify the rift plane whose orientation is parallel to the pre-existing microcracks as well as the distribution of stress induced microcracks. $C_AI$ decreased after cyclic loading and the relationship between $C_AI$ and number of cycles shows comparatively coherent negative trends. indicating that stress induced microcracks are aligned perpendicular to the orientation of pre-existing microcracks and that the amounts are proportional to the number of loading cycles. The difference of anisotropy constants before and after cyclic loading was effective in delineating the level of cracks and we called it Induced Crack Index. Velocity measurements and microscopic observations show that anisotropy was caused mainly due to microcracks aligned to a particular direction.

  • PDF

Numerical Analysis for Prediction of Fatigue Crack Opening Level

  • Choi, Hyeon Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1989-1995
    • /
    • 2004
  • Finite element analysis(FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials.

Finite Element Analysis of Harmonics Generation by Nonlinear Inclusion

  • Yang, Seung-Yong;Kim, No-Hyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제30권6호
    • /
    • pp.564-568
    • /
    • 2010
  • When ultrasound propagates to a crack, transmitted and reflected waves are generated. These waves have useful information for the detection of the crack lying in a structure. When a crack is under residual stress, crack surfaces will contact each other and a closed crack is formed. For closed cracks, the fundamental component of the reflected and transmitted waves will be weak, and as such it is not easy to detect them. In this case, higher harmonic components will be useful. In this paper, nonlinear characteristic of a closed crack is modeled by a continuum material having a tensile-compressive unsymmetry, and the amplitude of the second harmonic wave was obtained by spectrum analysis. Variation of the second harmonic component depending on the nonlinearity of the inclusion was investigated. Two-dimensional plane strain model is considered, and finite element software ABAQUS/Explicit is used.

Study for the Improvement of Fatigue Crack on Intersection of Longitudinal- Transversal Rib in Orthotropic Steel Deck Bridge (강바닥판교의 종리브-횡리브 교차연결부의 피로균열 개선방안 연구)

  • Kong, Byung-Seung;Yun, Seong-Wun
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1084-1089
    • /
    • 2004
  • Recently, Orthotropic steel deck bridges, which have long span decks, have been regarded as one of economical as well as durable bridge types. However, Orthotropic steel deck bridge is used by a lot of welding, which may cause welding defect and deformation of connections. This kind of system happens some damages by the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest point because of the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that a study for the installing of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical system of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF